Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty
نویسندگان
چکیده
Characterizing interactions between multiple brain regions is important for understanding brain function. Functional connectivity measures based on partial correlation provide an estimate of the linear conditional dependence between brain regions after removing the linear influence of other regions. Estimation of partial correlations is, however, difficult when the number of regions is large, as is now increasingly the case with a growing number of large-scale brain connectivity studies. To address this problem, we develop novel methods for estimating sparse partial correlations between multiple regions in fMRI data using elastic net penalty (SPC-EN), which combines L1- and L2-norm regularization We show that L1-norm regularization in SPC-EN provides sparse interpretable solutions while L2-norm regularization improves the sensitivity of the method when the number of possible connections between regions is larger than the number of time points, and when pair-wise correlations between brain regions are high. An issue with regularization-based methods is choosing the regularization parameters which in turn determine the selection of connections between brain regions. To address this problem, we deploy novel stability selection methods to infer significant connections between brain regions. We also compare the performance of SPC-EN with existing methods which use only L1-norm regularization (SPC-L1) on simulated and experimental datasets. Detailed simulations show that the performance of SPC-EN, measured in terms of sensitivity and accuracy is superior to SPC-L1, especially at higher rates of feature prevalence. Application of our methods to resting-state fMRI data obtained from 22 healthy adults shows that SPC-EN reveals a modular architecture characterized by strong inter-hemispheric links, distinct ventral and dorsal stream pathways, and a major hub in the posterior medial cortex - features that were missed by conventional methods. Taken together, our findings suggest that SPC-EN provides a powerful tool for characterizing connectivity involving a large number of correlated regions that span the entire brain.
منابع مشابه
Identification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data
Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...
متن کاملFeature Selection Based on Genetic Algorithm in the Diagnosis of Autism Disorder by fMRI
Background: Autism Spectrum Disorder (ASD) occurs based on the continuous deficit in a person’s verbal skills, visual, auditory, touch, and social behavior. Over the last two decades, one of the most important approaches in studying brain functions in autistic persons is using functional Magnetic Resonance Imaging (fMRI). Objectives: It is common to use all brain regions in functional extracti...
متن کاملAn Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation
Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brai...
متن کاملAdaptive Multi-task Sparse Learning with an Application to fMRI Study
In this paper, we consider the multi-task sparse learning problem under the assumption that the dimensionality diverges with the sample size. The traditional l1/l2 multi-task lasso does not enjoy the oracle property unless a rather strong condition is enforced. Inspired by adaptive lasso, we propose a multi-stage procedure, adaptive multi-task lasso, to simultaneously conduct model estimation a...
متن کاملImplications of Inconsistencies between fMRI and dMRI on Multimodal Connectivity Estimation
There is a recent trend towards integrating resting state functional magnetic resonance imaging (RS-fMRI) and diffusion MRI (dMRI) for brain connectivity estimation, as motivated by how estimates from these modalities are presumably two views reflecting the same underlying brain circuitry. In this paper, we show on a cohort of 60 subjects that conventional functional connectivity (FC) estimates...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 59 4 شماره
صفحات -
تاریخ انتشار 2012