Thrombin regulates the metastatic potential of human rhabdomyosarcoma cells: distinct role of PAR1 and PAR3 signaling.
نویسندگان
چکیده
We observed that human rhabdomyosarcoma (RMS) cells highly express a tissue factor that promotes thrombin formation, which indirectly and directly affects RMS progression. First, we found that thrombin activates platelets to generate microvesicles (PMV), which transfer to RMS cells' alpha2beta3 integrin and increase their adhesiveness to endothelial cells. Accordingly, RMS cells covered with PMVs showed higher metastatic potential after i.v. injection into immunodeficient mice. Furthermore, PMVs activate mitogen-activated protein kinase (MAPK)p42/44 and AKT to chemoattract RMS cells. We also found that RMS cells express functional protease-activated receptor-1 (PAR1) and PAR3 and respond to thrombin stimulation by MAPKp42/44 and MAPKp38 phosphorylation. To our surprise, thrombin did not affect RMS proliferation or survival; it inhibited the chemotactic and adhesive properties of RMS cells. However, when PAR1-specific agonist thrombin receptor-activating peptide 6 was used, which does not activate PAR3, selective PAR1 stimulation enhanced RMS proliferation. To learn more on the role of PAR1 and PAR3 antagonism in RMS proliferation and metastasis, we knocked down both receptors by using a short hairpin RNA strategy. We found that although thrombin does not affect growth of PAR1(-/-) cells, it stimulated the proliferation of PAR3(-/-) cells. More importantly, PAR3(-/-) cells, in contrast to PAR1(-/-) ones, formed larger tumors in immunodeficient mice. We conclude that thrombin is a novel underappreciated modulator of RMS metastasis and that we have identified a novel role for PAR3 in thrombin signaling.
منابع مشابه
Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization.
Thrombin activates endothelial cell signaling by cleaving the protease-activated receptor-1 (PAR1). However, the function of the apparently nonsignaling receptor PAR3 also expressed in endothelial cells is unknown. We demonstrate here the crucial role of PAR3 in potentiating the responsiveness of PAR1 to thrombin. We tested the hypothesis that PAR1/PAR3 heterodimerization and its effect in modi...
متن کاملProtease-activated receptors 1 and 4 mediate activation of human platelets by thrombin.
Because of the role of thrombin and platelets in myocardial infarction and other pathological processes, identifying and blocking the receptors by which thrombin activates platelets has been an important goal. Three protease-activated receptors (PARs) for thrombin -- PAR1, PAR3, and PAR4 -- are now known. PAR1 functions in human platelets, and the recent observation that a PAR4-activating pepti...
متن کاملRegular Article THROMBOSIS AND HEMOSTASIS Noncanonical PAR3 activation by factor Xa identifies a novel pathway for Tie2 activation and stabilization of vascular integrity
Protease-activated receptors (PARs) are G protein-coupled receptors that comprise a subfamily of 4 receptors (PAR1, PAR2, PAR3, and PAR4). The PARs are unique in that they carry their own encrypted ligand encoded in the extracellular N-terminal tail. Proteolysis by coagulation or vascular proteases creates a new N-terminal tethered ligand that activates the PAR. Multiple proteases can activate ...
متن کاملCofactoring and dimerization of proteinase-activated receptors.
Proteinase-activated receptors (PARs) are G protein-coupled receptors that transmit cellular responses to extracellular proteases and have important functions in vascular physiology, development, inflammation, and cancer progression. The established paradigm for PAR activation involves proteolytic cleavage of the extracellular N terminus, which reveals a new N terminus that functions as a tethe...
متن کاملThe signaling adaptor GAB1 regulates cell polarity by acting as a PAR protein scaffold.
Cell polarity plays a key role in development and is disrupted in tumors, yet the molecules and mechanisms that regulate polarity remain poorly defined. We found that the scaffolding adaptor GAB1 interacts with two polarity proteins, PAR1 and PAR3. GAB1 binds PAR1 and enhances its kinase activity. GAB1 brings PAR1 and PAR3 into a transient complex, stimulating PAR3 phosphorylation by PAR1. GAB1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer research : MCR
دوره 8 5 شماره
صفحات -
تاریخ انتشار 2010