Asymptotic behaviour of solutions to abstract logistic equations.

نویسندگان

  • Janet Dyson
  • Rosanna Villella-Bressan
  • Glenn F Webb
چکیده

We analyze the asymptotic behaviour of solutions of the abstract differential equation u'(t)=Au(t)-F(u(t))u(t)+f. Our results are applicable to models of structured population dynamics in which the state space consists of population densities with respect to the structure variables. In the equation the linear term A corresponds to internal processes independent of crowding, the nonlinear logistic term F corresponds to the influence of crowding, and the source term f corresponds to external effects. We analyze three separate cases and show that for each case the solutions stabilize in a way governed by the linear term. We illustrate the results with examples of models of structured population dynamics -- a model for the proliferation of cell lines with telomere shortening, a model of proliferating and quiescent cell populations, and a model for the growth of tumour cord cell populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic behaviour of positive large solutions of quasilinear logistic problems

We are interested in the asymptotic analysis of singular solutions with blowup boundary for a class of quasilinear logistic equations with indefinite potential. Under natural assumptions, we study the competition between the growth of the variable weight and the behaviour of the nonlinear term, in order to establish the blow-up rate of the positive solution. The proofs combine the Karamata regu...

متن کامل

Asymptotic Behaviour of a Difference Equation with Complex-valued Coefficients

Abstract. The asymptotic behaviour for solutions of a difference equation ∆zn = f(n, zn), where the complex-valued function f(n, z) is in some meaning close to a holomorphic function h, and of a Riccati difference equation is studied using a Lyapunov function method. The paper is motivated by papers on the asymptotic behaviour of the solutions of differential equations with complex-valued right...

متن کامل

Boundedness and asymptotic stability for delayed equations of logistic type

For a scalar Lotka{Volterra-type delay equation _x(t) = b(t)x(t)[1¡L(xt)], where L : C ([¡r; 0];R) ! R is a bounded linear operator and b a positive continuous function, su± cient conditions are established for the boundedness of positive solutions and for the global stability of the positive equilibrium, when it exists. Special attention is given to the global behaviour of solutions for the ca...

متن کامل

Asymptotic Analysis of Binary Gas Mixture Separation by Nanometric Tubular Ceramic Membranes: Cocurrent and Countercurrent Flow Patterns

Analytical gas-permeation models for predicting the separation process across  membranes (exit compositions and area requirement) constitutes an important and necessary step in understanding the overall performance of  membrane modules. But, the exact (numerical) solution methods suffer from the complexity of the solution. Therefore, solutions of nonlinear ordinary differential equations th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical biosciences

دوره 206 2  شماره 

صفحات  -

تاریخ انتشار 2007