Second Leray spectral sequence of relative hypercohomology.

نویسندگان

  • S Lubkin
  • G C Kato
چکیده

A second Leray spectral sequence of relative hypercohomology is constructed. (This is skew in generality to an earlier one constructed by S. Lubkin [(1968) Ann. Math. 87, 105-255].) The Mayer-Vietoris sequence of relative hypercohomology [Lubkin, S. (1968) Ann. Math. 87, 105-255] is also generalized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 Leray Spectral Sequence Theorem for Nccw

We prove in this paper a noncommutative version of Leray Theorem and then Leray-Serre Spectral Theorem for noncommutative Serre fibrations: for NC Serre fibration there are converging spectral sequences with E 2 terms as E 2 p,q = HP p (A; HP q (B, A)) =⇒ HP p+q (B) and E 2 p,q = HP p (A; Kq(B, A)) =⇒ Kp+q(B).

متن کامل

2 00 1 Degeneration of the Leray spectral sequence for certain geometric quotients

We prove that the Leray spectral sequence in rational cohomology for the quotient map U n,d → U n,d /G where U n,d is the affine variety of equations for smooth hypersurfaces of degree d in P n (C) and G is the general linear group, degenerates at E 2 .

متن کامل

2 5 Ja n 20 02 Degeneration of the Leray spectral sequence for certain geometric quotients

We prove that the Leray spectral sequence in rational cohomology for the quotient map U n,d → U n,d /G where U n,d is the affine variety of equations for smooth hypersurfaces of degree d in P n (C) and G is the general linear group, degenerates at E 2 .

متن کامل

Degeneration of the Leray Spectral Sequence for Certain Geometric Quotients

We prove that the Leray spectral sequence in rational cohomology for the quotient map Un,d → Un,d/G where Un,d is the affine variety of equations for smooth hypersurfaces of degree d in P(C) and G is the general linear group, degenerates at E2. 2000 Math. Subj. Class. 14D20, 14L35, 14J70.

متن کامل

The Leray-serre Spectral Sequence

Spectral sequences are a powerful bookkeeping tool, used to handle large amounts of information. As such, they have become nearly ubiquitous in algebraic topology and algebraic geometry. In this paper, we take a few results on faith (i.e., without proof, pointing to books in which proof may be found) in order to streamline and simplify the exposition. From the exact couple formulation of spectr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 75 10  شماره 

صفحات  -

تاریخ انتشار 1978