Building a Model Category out of Multiplier Ideal Sheaves
نویسنده
چکیده
We will construct a Quillen model structure out of the multiplier ideal sheaves on a smooth quasi-projective variety using earlier works of Isaksen and Barnea and Schlank. We also show that fibrant objects of this model category are made of kawamata log terminal pairs in birational geometry.
منابع مشابه
Computations of Multiplier Ideals via Bernstein-sato Polynomials
Multiplier ideals are very important in higher dimensional geometry to study the singularities of ideal sheaves. It reflects the singularities of the ideal sheaves and provides strong vanishing theorem called the Kawamata-Viehweg-Nadel vanishing theorem (see [3]). However, the multiplier ideals are defined via a log resolution of the ideal sheaf and divisors on the resolved space, and it is dif...
متن کاملTheory of Non - Lc Ideal Sheaves — Basic Properties —
We introduce the notion of non-lc ideal sheaves. It is an analogue of the notion of multiplier ideal sheaves. We establish the restriction theorem, which seems to be the most important property of non-lc ideal sheaves.
متن کاملTheory of Non - Lc Ideal Sheaves
We introduce the notion of non-lc ideal sheaves. It is an analogue of the notion of multiplier ideal sheaves. We establish the restriction theorem, which seems to be the most important property of non-lc ideal sheaves.
متن کاملOn the construction of Nadel multiplier ideal sheaves and the limiting behavior of the Ricci flow
In this note we construct Nadel multiplier ideal sheaves using the Ricci flow on Fano manifolds. This extends a result of Phong, Šešum and Sturm. These sheaves, like their counterparts constructed by Nadel for the continuity method, can be used to obtain an existence criterion for KählerEinstein metrics. We end with a conjectural discussion on a possible extension of this result to general Kähl...
متن کاملJa n 20 07 MULTIPLIER IDEAL SHEAVES AND THE KÄHLER - RICCI FLOW
Multiplier ideal sheaves are constructed as obstructions to the convergence of the Kähler-Ricci flow on Fano manifolds, following earlier constructions of Kohn, Siu, and Nadel, and using the recent estimates of Kolodziej and Perelman.
متن کامل