Neural Style Transfer: A Review
نویسندگان
چکیده
The recent work of Gatys et al. demonstrated the power of Convolutional Neural Networks (CNN) in creating artistic fantastic imagery by separating and recombing the image content and style. This process of using CNN to migrate the semantic content of one image to different styles is referred to as Neural Style Transfer. Since then, Neural Style Transfer has become a trending topic both in academic literature and industrial applications. It is receiving increasing attention from computer vision researchers and several methods are proposed to either improve or extend the original neural algorithm proposed by Gatys et al. However, there is no comprehensive survey presenting and summarizing recent Neural Style Transfer literature. This review aims to provide an overview of the current progress towards Neural Style Transfer, as well as discussing its various applications and open problems for future research.
منابع مشابه
Neural Style Transfer Replication Project
There are three major advancements in the area of neural style transfer. In 2015, the paper, A neural algorithm of artistic style [2], proposes an iterative algorithm for neural style transfer. In 2016, the paper, Perceptual losses for real-time style transfer and super-resolution [3], proposes a real-time neural style transfer algorithm. However, for this algorithm, we have to train a seperate...
متن کاملUnseen Style Transfer Based on a Condi- Tional Fast Style Transfer Network
In this paper, we propose a feed-forward neural style transfer network which can transfer unseen arbitrary styles. To do that, first, we extend the fast neural style transfer network proposed by Johnson et al. (2016) so that the network can learn multiple styles at the same time by adding a conditional input. We call this as “a conditional style transfer network”. Next, we add a style condition...
متن کاملTowards Deep Style Transfer: A Content-Aware Perspective
Recently, it has been shown that one can invert a deep convolutional neural network originally trained for classification tasks to transfer image style. There is, however, a dearth of research on content-aware style transfer. In this paper, we generalize the original neural algorithm [1] for style transfer from two perspectives: where to transfer and what to transfer. To specify where to transf...
متن کاملAn Exploration of Style Transfer Using Deep Neural Networks
Convolutional Neural Networks and Graphics Processing Units have been at the core of a paradigm shift in computer vision research that some researchers have called “the algorithmic perception revolution.” This thesis presents the implementation and analysis of several techniques for performing artistic style transfer using a Convolutional Neural Network architecture trained for large-scale imag...
متن کاملReal-time Image Style Transfer
Artistic style transfer has long been an interesting topic in computer vision research. Recently several methods for style transfer based on convolutional neural networks have been proposed. This project aims at understanding and implementing some of the existing methods. More specifically we succeed in implementing the optimization based neural algorithm as well as the real-time style transfer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.04058 شماره
صفحات -
تاریخ انتشار 2017