Two Fast Parallel GCD Algorithms of Many Integers

نویسنده

  • Sidi Mohamed Sedjelmaci
چکیده

We present two new parallel algorithms which compute the GCD of n integers of O(n) bits in O(n/ logn) time with O(n) processors in the worst case, for any ε > 0 in CRCW PRAM model. More generally, we prove that computing the GCD of m integers of O(n) bits can be achieved in O(n / logn) parallel time with O(mn ) processors, for any 2 ≤ m ≤ n/ logn, i.e. the parallel time does not depend on the number m of integers considered in this range. We suggest an extended GCD version for many integers as well as an algorithm to solve linear Diophantine equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sublinear Parallel Algorithm for Computing the Greatest Common Divisor of Two Integers

The atdvent of practical parallel processors has caused a reexamination of many existing algorithms with'the hope of discovering a parallel implementation. One of the oldest and best know algorithms is Euclid's algorithm for computing the greatest common divisor (GCD). In this paper we present a parallel algorithm to compute the GCD of two integers. Although there have been results in the paral...

متن کامل

The Mixed Binary Euclid Algorithm

We present a new GCD algorithm for two integers that combines both the Euclidean and the binary gcd approaches. We give its worst case time analysis and prove that its bit-time complexity is still O(n) for two n-bit integers. However, our preliminar experiments show that it is very fast for small integers. A parallel version of this algorithm matches the best presently known time complexity, na...

متن کامل

Binary GCD Like Algorithms for Some Complex Quadratic Rings

On the lines of the binary gcd algorithm for rational integers, algorithms for computing the gcd are presented for the ring of integers in Q( √ d) where d ∈ {−2,−7,−11,−19}. Thus a binary gcd like algorithm is presented for a unique factorization domain which is not Euclidean (case d = −19). Together with the earlier known binary gcd like algorithms for the ring of integers in Q( √−1) and Q(√−3...

متن کامل

Efficient Algorithms for GCD and Cubic Residuosity in the Ring of Eisenstein Integers

We present simple and efficient algorithms for computing gcd and cubic residuosity in the ring of Eisenstein integers, Z[ζ], i.e. the integers extended with ζ, a complex primitive third root of unity. The algorithms are similar and may be seen as generalisations of the binary integer gcd and derived Jacobi symbol algorithms. Our algorithms take time O(n2) for n bit input. This is an improvement...

متن کامل

Two efficient algorithms for the computation of ideal sums in quadratic orders

This paper deals with two different asymptotically fast algorithms for the computation of ideal sums in quadratic orders. If the class number of the quadratic number field is equal to 1, these algorithms can be used to calculate the GCD in the quadratic order. We show that the calculation of an ideal sum in a fixed quadratic order can be done as fast as in Z up to a constant factor, i.e., in O(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017