Option Pricing with Constant Elasticity of Variance (CEV) Model
نویسندگان
چکیده
Abstract In this work we propose an approximate numerical method for pricing of options for the constant elasticity of variance (CEV) diffusion model. We prove firstly the existence and uniqueness of the solution in weighted Sobolev space, and then we propose the finite element method and finite difference method to solve the considered problem. Therefore, we compare the obtained results by the two approaches, with those given by the Monte Carlo method in Broadie-Kaya [6], using two simulation techniques : the exact method and the Euler discretization. A comparative numerical study is done using some values of the coefficient of elasticity.
منابع مشابه
Fractional constant elasticity of variance model
Abstract: This paper develops a European option pricing formula for fractional market models. Although there exist option pricing results for a fractional Black-Scholes model, they are established without accounting for stochastic volatility. In this paper, a fractional version of the Constant Elasticity of Variance (CEV) model is developed. European option pricing formula similar to that of th...
متن کاملA Note of Option Pricing for Constant Elasticity of Variance Model
We study the arbitrage free option pricing problem for constant elasticity of variance (CEV) model. To treat the stochastic aspect of the CEV model, we direct attention to the relationship between the CEV model and squared Bessel processes. Then we show the existence of a unique equivalent martingale measure and derive the Cox’s arbitrage free option pricing formula through the properties of sq...
متن کاملConstant Elasticity of Variance Option Pricing Model with Time-dependent Parameters
This paper provides a method for pricing options in the constant elasticity of variance (CEV) model environment using the Lie-algebraic technique when the model parameters are time-dependent. Analytical solutions for the option values incorporating time-dependent model parameters are obtained in various CEV processes with different elasticity factors. The numerical results indicate that option ...
متن کاملOption Pricing under Hybrid Stochastic and Local Volatility
This paper deals with an option pricing model which can be thought of as a hybrid stochastic and local volatility model. This model is built on the local volatility term of the well-known constant elasticity of variance (CEV) model multiplied by a stochastic volatility term driven by a fast mean-reverting Ornstein-Uhlenbeck process. An asymptotic formula for European option price is derived to ...
متن کاملPricing Barrier Options with Square Root Constant Elasticity of Variance Process
The square root constant elasticity of variance (CEV) process has been paid little attention in previous research on valuation of barrier options. In this paper we derive analytical option pricing formulae of up-and-out options with this process using the eigenfunction expansion technique. We develop an efficient algorithm to compute numerical results from the formula. The numerical results are...
متن کامل