Soft-X-ray-enhanced electrostatic precipitation for protection against inhalable allergens, ultrafine particles, and microbial infections.

نویسندگان

  • Eric M Kettleson
  • Jill M Schriewer
  • R Mark L Buller
  • Pratim Biswas
چکیده

Protection of the human lung from infectious agents, allergens, and ultrafine particles is difficult with current technologies. High-efficiency particulate air (HEPA) filters remove airborne particles of >0.3 μm with 99.97% efficiency, but they are expensive to maintain. Electrostatic precipitation has been used as an inexpensive approach to remove large particles from airflows, but it has a collection efficiency minimum in the submicrometer size range, allowing for a penetration window for some allergens and ultrafine particles. Incorporating soft X-ray irradiation as an in situ component of the electrostatic precipitation process greatly improves capture efficiency of ultrafine particles. Here we demonstrate the removal and inactivation capabilities of soft-X-ray-enhanced electrostatic precipitation technology targeting infectious agents (Bacillus anthracis, Mycobacterium bovis BCG, and poxviruses), allergens, and ultrafine particles. Incorporation of in situ soft X-ray irradiation at low-intensity corona conditions resulted in (i) 2-fold to 9-fold increase in capture efficiency of 200- to 600-nm particles and (ii) a considerable delay in the mean day of death as well as lower overall mortality rates in ectromelia virus (ECTV) cohorts. At the high-intensity corona conditions, nearly complete protection from viral and bacterial respiratory infection was afforded to the murine models for all biological agents tested. When optimized for combined efficient particle removal with limited ozone production, this technology could be incorporated into stand-alone indoor air cleaners or scaled for installation in aircraft cabin, office, and residential heating, ventilating, and air-conditioning (HVAC) systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement and capture of fine and ultrafine particles from a pilot-scale pulverized coal combustor with an electrostatic precipitator.

Experiments were carried out in a pilot-scale pulverized coal combustor at the Energy and Environmental Research Center (EERC) burning a Powder River Basin (PRB) subbituminous coal. A scanning mobility particle sizer (SMPS) and an electrical low-pressure impactor (ELPI) were used to measure the particle size distributions (PSDs) in the range of 17 nm to 10 microm at the inlet and outlet of the ...

متن کامل

Investigation of the Mass Attenuation Coefficient for Composites Containing Nano and Micro-Particles of Copper Oxide against Diagnostic X-ray

Radiation protection and the selection of suitable materials to reduce radiation effects is one of the important branches of medical science and radiation. In this paper, the mass attenuation coefficients, half value layer thicknesses and thicknesses of 0/5 mm lead of polyvinyl chloride (PVC) composites containing Nano and micro-particles of copper oxide are calculated using experimental method...

متن کامل

Particle size and kind of mica in synthesis of nontoxic bronze and gold pearlescent pigments based on nanoencapsulated hematite

Nano-encapsulated iron oxide in Zirconium oxide-coated mica pigments are thermally stable,innocuous to human health, non-combustible, and they do not conduct electricity. They could beapplied in several industries such as thermoplastics, cosmetics, food packaging, children toys, paints,automobiles coating, security purposes, and banknotes. Nowadays, they are highly desirable inceramic decoratio...

متن کامل

Synthesis of nanosilica from silica fume using an acid-base precipitation technique and PVA as a nonionic surfactant

The purpose of the present study was to synthesize and characterize nanosilica from alkali-extraction of silica fume under controlled conditions using poly (vinyl alcohol) (PVA) as a dispersing agent. The dissolution efficiency of silica fume was affected by various factors such as concentration of the reagent, reaction time and temperature. A maximum dissolution efficiency of 91% was achieved ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 79 4  شماره 

صفحات  -

تاریخ انتشار 2013