On the theory of electron transfer reactions at semiconductor electrodeÕliquid interfaces

نویسندگان

  • Yi Qin Gao
  • Yuri Georgievskii
  • R. A. Marcus
چکیده

Electron transfer reaction rate constants at semiconductor/liquid interfaces are calculated using the Fermi Golden Rule and a tight-binding model for the semiconductors. The slab method and a z-transform method are employed in obtaining the electronic structures of semiconductors with surfaces and are compared. The maximum electron transfer rate constants at Si/viologen and InP/Me2Fc 1/0 interfaces are computed using the tight-binding type calculations for the solid and the extended-Hückel for the coupling to the redox agent at the interface. These results for the bulk states are compared with the experimentally measured values of Lewis and co-workers, and are in reasonable agreement, without adjusting parameters. In the case of InP/liquid interface, the unusual current vs applied potential behavior is additionally interpreted, in part, by the presence of surface states. © 2000 American Institute of Physics. @S0021-9606~00!70507-1#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the theory of electron transfer reactions at semiconductorÕliquid interfaces. II. A free electron model

Electron transfer reactions at semiconductor/liquid interfaces are studied using the Fermi Golden rule and a free electron model for the semiconductor and the redox molecule. Bardeen’s method is adapted to calculate the coupling matrix element between the molecular and semiconductor electronic states where the effective electron mass in the semiconductor need not equal the actual electron mass....

متن کامل

Ultrafast direct electron transfer at organic semiconductor and metal interfaces

The ability to control direct electron transfer can facilitate the development of new molecular electronics, light-harvesting materials, and photocatalysis. However, control of direct electron transfer has been rarely reported, and the molecular conformation-electron dynamics relationships remain unclear. We describe direct electron transfer at buried interfaces between an organic polymer semic...

متن کامل

Molecular control of photo-induced electron and energy transfer at nanocrystalline semiconductor interfaces

Some strategies toward the realization of molecular control of photo-induced charge-transfer processes at nanocrystalline semiconductor interfaces are discussed. Supramolecular compounds that efficiently absorb light, promote interfacial electron transfer, and feature additional functions such as intramolecular electron transfer when bound to semiconductor surfaces are of specific interest. Tun...

متن کامل

The Theory of the Light-Induced Evolution of Hydrogen at Semiconductor Electrodes

The photoelectrode kinetics of the hydrogen evolution reaction is considered, using the WKB approximation for the penetra t ion of the barr ier at the semiconductor-solut ion interface. The absorption characteristics of photons in the eIectrode are introduced and the n u m b e r of electrons produced at the surface is obtained as a function of the semiconductor statistics, and also diffusion an...

متن کامل

Investigation on the effect of trifluoromethyl group on the [3+2] cycloadditions of thiocarbonyl S-methanides with α, β-unsaturated ketones: A theoretical study using DFT

A [3+2] cycloaddition (32CA) reaction among a thiocarbonyl ylide (TCY 2) with (E)-4,4,4-trifluoro-4-phenylbut-3-en-2-one (TFB 4) as an electron-deficient enone in tetrahydrofuran (THF) were studied within the Molecular Electron Density Theory (MEDT), at the DFT-B3LYP/6-31G(d) computational level to analysis energetics, selectivities, and mechanistic aspects. The reaction can progress in four co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000