Distribution of topoisomerase II-mediated cleavage sites and relation to structural and functional landmarks in 830 kb of Drosophila DNA.
نویسندگان
چکیده
The pattern of sites for cleavage mediated by topoisomerase II was determined in 830 kb of cloned DNA from the Drosophila X chromosome, with the objectives of comparing it with mapped structural and functional landmarks and examining if the correlations with such landmarks reported in individual loci can be generalized to a region approximately 100 times longer. The relative frequencies of topoisomerase II cleavage sites in 247 restriction fragments from 67 clones were quantified by hybridization with probes prepared from DNA fragments which abutted all cleavage sites in each clone, selected through the covalently bound topoisomerase II subunit; the specificity and quantitative nature of this method were demonstrated using a plasmid DNA model. The 12 restriction fragments with strong nuclear scaffold attachment (SAR) activity, of which seven possess autonomous replication (ARS) activity, show statistically strong coincidence or contiguity ( P 10 kb; their sensitivity is therefore unlikely to be due to alternating purine-pyrimidine repeats or regions of Z conformation, which are preferred motifs. The hypothesis that they possess intrinsic curvature is consistent with the similarity of their length and spacing to regions of predicted curvature in the 315 kb DNA of Saccharomyces cerevisiae chromosome III and with the reported strong binding preference of topoisomerase II for curved DNA. The topoisomerase II cleavage pattern in this DNA further shows that its relationships to functional properties seen in individual loci, especially to MAR/SAR and ARS activity and to the restricted accessibility of DNA to topoisomerase II in vivo, can be generalized to much longer regions of the genome.
منابع مشابه
Mapping of genomic DNA loop organization in a 500-kilobase region of the Drosophila X chromosome by the topoisomerase II-mediated DNA loop excision protocol.
The recently developed procedure of chromosomal DNA loop excision by topoisomerase II-mediated DNA cleavage at matrix attachment sites (S. V. Razin, R. Hancock, O. Iarovaia, O. Westergaard, I. Gromova, and G. P. Georgiev, Cold Spring Harbor Symp. Quant. Biol. 58:25-35, 1993; I. I. Gromova, B. Thompsen, and S. V. Razin, Proc. Natl. Acad. Sci. USA 92:102-106, 1995) has been employed for mapping t...
متن کاملCoupling the core of the anticancer drug etoposide to an oligonucleotide induces topoisomerase II-mediated cleavage at specific DNA sequences
Etoposide and other topoisomerase II-targeted drugs are important anticancer therapeutics. Unfortunately, the safe usage of these agents is limited by their indiscriminate induction of topoisomerase II-mediated DNA cleavage throughout the genome and by a lack of specificity toward cancer cells. Therefore, as a first step toward constraining the distribution of etoposide-induced DNA cleavage sit...
متن کاملMapping of a human centromere onto the DNA by topoisomerase II cleavage.
We have mapped the positions of topoisomerase II binding sites at the centromere of the human Y chromosome using etoposide-mediated DNA cleavage. A single region of cleavage is seen at normal centromeres, spanning approximately 50 kb within the centromeric alphoid array, but this pattern is abolished at two inactive centromeres. It therefore provides a marker for the position of the active cent...
متن کاملDrosophila topoisomerase II double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage site.
In order to study the sequence specificity of double-strand DNA cleavage by Drosophila topoisomerase II, we have mapped and sequenced 16 strong and 47 weak cleavage sites in the recombinant plasmid p pi 25.1. Analysis of the nucleotide and dinucleotide frequencies in the region near the site of phosphodiester bond breakage revealed a nonrandom distribution. The nucleotide frequencies observed w...
متن کاملHigher order chromatin structures in maize and Arabidopsis.
We are investigating the nature of plant genome domain organization by using DNase I- and topoisomerase II-mediated cleavage to produce domains reflecting higher order chromatin structures. Limited digestion of nuclei with DNase I results in the conversion of the >800 kb genomic DNA to an accumulation of fragments that represents a collection of individual domains of the genome created by prefe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 25 11 شماره
صفحات -
تاریخ انتشار 1997