The l-α-Lysophosphatidylinositol/GPR55 System and Its Potential Role in Human Obesity

نویسندگان

  • José María Moreno-Navarrete
  • Victoria Catalán
  • Lauren Whyte
  • Adenis Díaz-Arteaga
  • Rafael Vázquez-Martínez
  • Fernando Rotellar
  • Rocío Guzmán
  • Javier Gómez-Ambrosi
  • Marina R. Pulido
  • Wendy R. Russell
  • Mónica Imbernón
  • Ruth A. Ross
  • María M. Malagón
  • Carlos Dieguez
  • José Manuel Fernández-Real
  • Gema Frühbeck
  • Ruben Nogueiras
چکیده

GPR55 is a putative cannabinoid receptor, and l-α-lysophosphatidylinositol (LPI) is its only known endogenous ligand. We investigated 1) whether GPR55 is expressed in fat and liver; 2) the correlation of both GPR55 and LPI with several metabolic parameters; and 3) the actions of LPI on human adipocytes. We analyzed CB1, CB2, and GPR55 gene expression and circulating LPI levels in two independent cohorts of obese and lean subjects, with both normal or impaired glucose tolerance and type 2 diabetes. Ex vivo experiments were used to measure intracellular calcium and lipid accumulation. GPR55 levels were augmented in the adipose tissue of obese subjects and further so in obese patients with type 2 diabetes when compared with nonobese subjects. Visceral adipose tissue GPR55 correlated positively with weight, BMI, and percent fat mass, particularly in women. Hepatic GPR55 gene expression was similar in obese and type 2 diabetic subjects. Circulating LPI levels were increased in obese patients and correlated with fat percentage and BMI in women. LPI increased the expression of lipogenic genes in visceral adipose tissue explants and intracellular calcium in differentiated visceral adipocytes. These findings indicate that the LPI/GPR55 system is positively associated with obesity in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Lysophosphatidylinositol Receptor GPR55 Modulates Pain Perception in the Periaqueductal Gray.

Emerging evidence indicates the involvement of GPR55 and its proposed endogenous ligand, lysophosphatidylinositol (LPI), in nociception, yet their role in central pain processing has not been explored. Using Ca(2+) imaging, we show here that LPI elicits concentration-dependent and GPR55-mediated increases in intracellular Ca(2+) levels in dissociated rat periaqueductal gray (PAG) neurons, which...

متن کامل

Lysophosphatidylinositol Causes Neurite Retraction via GPR55, G13 and RhoA in PC12 Cells

GPR55 was recently identified as a putative receptor for certain cannabinoids, and lysophosphatidylinositol (LPI). Recently, the role of cannabinoids as GPR55 agonists has been disputed by a number of reports, in part, because studies investigating GPR55 often utilized overexpression systems, such as the GPR55-overexpressing HEK293 cells, which make it difficult to deduce the physiological role...

متن کامل

The GPR 55 agonist, L-α-lysophosphatidylinositol, mediates ovarian carcinoma cell-induced angiogenesis

BACKGROUND AND PURPOSE Highly vascularized ovarian carcinoma secretes the putative endocannabinoid and GPR55 agonist, L-α-lysophosphatidylinositol (LPI), into the circulation. We aimed to assess the involvement of this agonist and its receptor in ovarian cancer angiogenesis. EXPERIMENTAL APPROACH Secretion of LPI by three ovarian cancer cell lines (OVCAR-3, OVCAR-5 and COV-362) was tested by ...

متن کامل

Minireview: recent developments in the physiology and pathology of the lysophosphatidylinositol-sensitive receptor GPR55.

Emerging data suggest that off-target cannabinoid effects may be mediated via novel seven-transmembrane spanning/G protein-coupled receptors. Due to its cannabinoid sensitivity, the G protein-coupled receptor 55 (GPR55) was recently proposed as a candidate; however, GPR55 is phylogenetically distinct from the traditional cannabinoid receptors, and the conflicting pharmacology, signaling, and fu...

متن کامل

Lysophosphatidylinositol Signalling and Metabolic Diseases.

Metabolism is a chemical process used by cells to transform food-derived nutrients, such as proteins, carbohydrates and fats, into chemical and thermal energy. Whenever an alteration of this process occurs, the chemical balance within the cells is impaired and this can affect their growth and response to the environment, leading to the development of a metabolic disease. Metabolic syndrome, a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2012