Improvements in Neural-Network Training and Search Techniques for Continuous Digit Recognition

نویسندگان

  • John-Paul Hosom
  • Ronald A. Cole
  • Piero Cosi
چکیده

This paper describes a set of experiments on training and search techniques for development of a neural-network based continuous digits recognizer. When the best techniques from these experiments were combined to train a final recognizer, there was a 56% reduction in word-level error on the continuous digits recognition task. The best system had word accuracy of 97.67% on a test set of the OGI 30K Numbers corpus; this corpus contains naturally-produced continuous digit strings recorded over telephone channels. Experiments investigated the effects of the feature set, the amount of data used for training, the type of context-dependent categories to be recognized, the values for duration limits, and the type of grammar. The experiments indicate that the grammar and duration limits had a greater effect on recognition accuracy than the output categories, cepstral features, or a doubling of the amount of training data. In addition, the forwardbackward method of training neural networks was employed in developing the final network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

A Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)

This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...

متن کامل

Evaluation and integration of neural-network training techniques for continuous digit recognition

This paper describes a set of experiments on neural-network training and search techniques that, when combined, have resulted in a 54% reduction in error on the continuous digits recognition task. The best system had word-level accuracy of 97.52% on a test set of the OGI 30K Numbers corpus, which contains naturally-produced continuous digit strings recorded over telephone channels. Experiments ...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998