Rational and recognisable power series

نویسنده

  • Jacques Sakarovitch
چکیده

2.1 Series over a graded monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Graded monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Topology on K〈〈M〉〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Distance on K〈〈M〉〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Summable families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Rational series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Star of a series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Star of a proper series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Strong semirings and star of an arbitrary series . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 The family of rational series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 K-rational operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Characteristic series and unambiguous rational sets . . . . . . . . . . . . . . . . . . 16 Rational K-expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The special subgroup of invertible non-commutative rational power series as a metric group

1: We give an easy proof of Schützenberger’s Theorem stating that non-commutative formal power series are rational if and only if they are recognisable. A byproduct of this proof is a natural metric on a subgroup of invertible rational non-commutative power series. We describe a few features of this metric group.

متن کامل

On the enumerating series of an abstract numeration system

It is known that any rational abstract numeration system is faithfully, and effectively, represented by an N-rational series. A simple proof of this result is given which yields a representation of this series which in turn allows a simple computation of the value of words in this system and easy constructions for the recognition of recognisable sets of numbers. It is also shown that conversely...

متن کامل

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

Diode laser assisted endodontic treatments in periapical lesions repair: case series

Background and Aim: Bacterial disinfection is considered as the primary etiology of pulpal and periapical lesions and as the result, adequate elimination of such infections is one of the purposes of root canal treatment; But since this purpose is impossible to achieve, reducing the bacterial load seems to be as a rational goal. Diode lasers have made their way into endodontics for better disinf...

متن کامل

Logic characterisation of p/q-recognisable sets

Let pq be a rational number. Numeration in base p q is defined by a function that evaluates each finite word over Ap = {0, 1, . . . , p− 1} to a rational number in some set Np q . In particular, Np q contains all integers and the literature on base pq usually focuses on the set of words that are evaluated to integers; it is a rather chaotic language which is not context-free. On the contrary, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009