π-Cooperativity effect on the base stacking interactions in DNA: is there a novel stabilization factor coupled with base pairing H-bonds?

نویسندگان

  • Hande Karabıyık
  • Resul Sevinçek
  • Hasan Karabıyık
چکیده

The results from absolutely localized molecular orbital (ALMO)-energy decomposition analysis (EDA) and ALMO-charge transfer analysis (CTA) at M06-2X/cc-pVTZ level reveal that double-proton transfer (DPT) reactions through base pairing H-bonds have nonignorable effects on the stacking energies of dinucleotide steps, which introduces us to a novel stabilization (or destabilization) factor in the DNA duplex. Thus, intra- and inter-strand base stacking interactions are coalesced with each other mediated by H-bridged quasirings between base pairs. Changes in stacking energies of dinucleotide steps depending on the positions of H atoms are due to variations in local aromaticities of individual nucleobases, manifesting π-cooperativity effects. CT analyses show that dispersion forces in dinucleotide steps can lead to radical changes in the redox properties of nucleobases, in particular those of adenine and guanine stacked dimers in a strand. Besides Watson-Crick rules, novel base pairing rules were propounded by considering CT results. According to these, additional base pairing through π-stacks of nucleobases in dinucleotide steps does not cause any intrinsic oxidative damage to the associated nucleobases throughout DPT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Hydrogen Bonding and π–π Stacking to Stabilization of 3D Networks of a New Proton Compound, (a-6-mpyH)(Hpyzd) H2O

A new proton transfer compound, formulated as (Hamp-6-pic)(Hpyzd) ∙H2O (1), has been synthesized from the reaction of pyrazine-2,3-dicarboxylic acid (H2pyzd)  and 2-amino-6-methyl pyridine (amp-6-pic), in 1:1 molar ratio. Extensive O−H×××O, N−H×××N and O−H×××O hydrogen bonds involving (Hamp-6-pic)+ cation, (Hpyzd)- anion and co-crystal water molecule٫ static electronic٫ and π…π stacking interac...

متن کامل

Investigation of Substituent Effects on the Strength of Hydrogen Bond in the Guanine: Cytosine Base Pairs: A Theoretical Study

In the present work, the substituent effect on the strength of H-bonds in the guanine – cytosine base pair was studied when the substituents are connected to the guanine base through a phenyl ring. In this study, guanine was substituted in the H8 and H9 positions by electron donating (ED) and electron withdrawing (EW) groups mediated by a phenyl ring in the gas phase. The calculations were perf...

متن کامل

Covalency in resonance-assisted halogen bonds demonstrated with cooperativity in N-halo-guanine quartets.

Halogen bonds are shown to possess the same characteristics as hydrogen bonds: charge transfer, resonance assistance and cooperativity. This follows from the computational analyses of the structure and bonding in N-halo-base pairs and quartets. The objective was to achieve an understanding of the nature of resonance-assisted halogen bonds (RAXB): how they resemble or differ from the better unde...

متن کامل

Backbone FC-H···O hydrogen bonds in 2'F-substituted nucleic acids.

Stabilization of nucleic acid secondary structures results from a subtle balance of multiple interactions. Base pairing, base stacking, and cation binding have been extensively studied for decades, whereas the role of other interactions remains poorly understood. Among them, nonconventional C H···O hydrogen bonds are especially interesting. The importance of these interactions in proteins was r...

متن کامل

Stacking interaction in the middle and at the end of a DNA helix studied with non-natural nucleotides.

Base stacking is important for the base pair interaction of a DNA duplex, DNA replication by polymerases, and single-stranded nucleotide overhangs. To study the mechanisms responsible for DNA stacking interactions, we measured the thermal stability of DNA duplexes containing a non-natural nucleotide tethered to a simple aromatic hydrocarbon group devoid of dipole moments and hydrogen bonding si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 29  شماره 

صفحات  -

تاریخ انتشار 2014