Publishing Microdata with a Robust Privacy Guarantee

نویسندگان

  • Jianneng Cao
  • Panagiotis Karras
چکیده

Today, the publication of microdata poses a privacy threat. Vast research has striven to define the privacy condition that microdata should satisfy before it is released, and devise algorithms to anonymize the data so as to achieve this condition. Yet, no method proposed to date explicitly bounds the percentage of information an adversary gains after seeing the published data for each sensitive value therein. This paper introduces β-likeness, an appropriately robust privacy model for microdata anonymization, along with two anonymization schemes designed therefor, the one based on generalization, and the other based on perturbation. Our model postulates that an adversary’s confidence on the likelihood of a certain sensitive-attribute (SA) value should not increase, in relative difference terms, by more than a predefined threshold. Our techniques aim to satisfy a given β threshold with little information loss. We experimentally demonstrate that (i) our model provides an effective privacy guarantee in a way that predecessor models cannot, (ii) our generalization scheme is more effective and efficient in its task than methods adapting algorithms for the k-anonymity model, and (iii) our perturbation method outperforms a baseline approach. Moreover, we discuss in detail the resistance of our model and methods to attacks proposed in previous research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Provably Private Data Anonymization: Or, k-Anonymity Meets Differential Privacy

Privacy-preserving microdata publishing currently lacks a solid theoretical foundation. Most existing techniques are developed to satisfy syntactic privacy notions such as k-anonymity, which fails to provide strong privacy guarantees. The recently proposed notion of differential privacy has been widely accepted as a sound privacy foundation for statistical query answering. However, no general p...

متن کامل

Privacy-preserving publishing microdata with full functional dependencies

Article history: Received 23 January 2010 Received in revised form 30 October 2010 Accepted 2 November 2010 Available online 10 November 2010 Data publishing has generated much concern on individual privacy. Recent work has shown that different background knowledge can bring various threats to the privacy of published data. In this paper, we study the privacy threat from the full functional dep...

متن کامل

Privacy Preservation in Data Publishing and Sharing A

Li, Tiancheng Ph.D., Purdue University, August 2010. Privacy Preservation in Data Publishing and Sharing. Major Professor: Ninghui Li. In this information age, data and knowledge extracted by data mining techniques represent a key asset driving research, innovation, and policy-making activities. Many agencies and organizations have recognized the need of accelerating such trends and are therefo...

متن کامل

Efficient Techniques for Preserving Microdata Using Slicing

Privacy preserving publishing is the kind of techniques to apply privacy to collected vast amount of data. One of the recent problem prevailing is in the field of data publication. The data often consist of personally identifiable information so releasing such data consists of privacy problem. Several anonymization techniques such as generalization and bucketization have been designed for priva...

متن کامل

Privacy beyond Single Sensitive Attribute

Publishing individual specific microdata has serious privacy implications. The k-anonymity model has been proposed to prevent identity disclosure from microdata, and the work on -diversity and t-closeness attempt to address attribute disclosure. However, most current work only deal with publishing microdata with a single sensitive attribute (SA), whereas real life scenarios often involve microd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PVLDB

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2012