Strengthened Hardness for Approximating Minimum Unique Game and Small Set Expansion

نویسنده

  • Peng Cui
چکیده

In this paper, the author puts forward a variation of Feige’s Hypothesis, which claims that it is hard on average refuting Unbalanced Max 3-XOR against biased assignments on a natural distribution. Under this hypothesis, the author strengthens the previous known hardness for approximating Minimum Unique Game, 5/4 − ǫ, by proving that Min 2-Lin-2 is hard to within 3/2 − ǫ and strengthens the previous known hardness for approximating Small Set Expansion, 4/3 − ǫ, by proving that Min Bisection is hard to approximate within 3 − ǫ. In addition, the author discusses the limitation of this method to show that it can strengthen the hardness for approximating Minimum Unique Game to 2− κ where κ is a small absolute positive, but is short of proving ωk(1) hardness for Minimum Unique Game or Small Set Expansion, by assuming a generalization of this hypothesis on Unbalanced Max k-CSP with balanced pairwise independent predicate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Inapproximability of Vertex Cover on k-Partite k-Uniform Hypergraphs

Computing a minimum vertex cover in graphs and hypergraphs is a well-studied optimizaton problem. While intractable in general, it is well known that on bipartite graphs, vertex cover is polynomial time solvable. In this work, we study the natural extension of bipartite vertex cover to hypergraphs, namely finding a small vertex cover in kuniform k-partite hypergraphs, when the k-partition is gi...

متن کامل

On the Hardness of Approximating Some NP-optimization Problems Related to Minimum Linear Ordering Problem

We study hardness of approximating several minimaximal and maximinimal NP-optimization problems related to the minimum linear ordering problem (MINLOP). MINLOP is to find a minimum weight acyclic tournament in a given arc-weighted complete digraph. MINLOP is APX-hard but its unweighted version is polynomial time solvable. We prove that, MIN-MAX-SUBDAG problem, which is a generalization of MINLO...

متن کامل

Inapproximability of Maximum Biclique Problems, Minimum k-Cut and Densest At-Least-k-Subgraph from the Small Set Expansion Hypothesis

The Small Set Expansion Hypothesis is a conjecture which roughly states that it is NP-hard to distinguish between a graph with a small subset of vertices whose (edge) expansion is almost zero and one in which all small subsets of vertices have expansion almost one. In this work, we prove conditional inapproximability results with essentially optimal ratios for the following graph problems based...

متن کامل

Inapproximability of Minimum Vertex Cover on k-Uniform k-Partite Hypergraphs

We study the problem of computing the minimum vertex cover on k-uniform k-partite hypergraphs when the k-partition is given. On bipartite graphs (k = 2), the minimum vertex cover can be computed in polynomial time. For k ≥ 3, this problem is known to be NP-hard. For general k, the problem was studied by Lovász [23], who gave a k2 -approximation based on the standard LP relaxation. Subsequent wo...

متن کامل

Minimizing the Union: Tight Approximations for Small Set Bipartite Vertex Expansion

In the Minimum k-Union problem (MkU) we are given a set system with n sets and are asked to select k sets in order to minimize the size of their union. Despite being a very natural problem, it has received surprisingly little attention: the only known approximation algorithm is an O( √ n)-approximation due to [Chlamtáč et al APPROX ’16]. This problem can also be viewed as the bipartite version ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015