Mapping Wild Leek through the Forest Canopy Using a UAV
نویسندگان
چکیده
Wild leek, an endangered plant species of Eastern North America, grows on forest floors and greens up to approximately three weeks before the trees it is typically found under, temporarily allowing it to be observed through the canopy by remote sensing instruments. This paper explores the accuracy with which wild leek can be mapped with a low-flying UAV. Nadir video imagery was obtained using a commercial UAV during the spring of 2017 in Gatineau Park, Quebec. Point clouds were generated from the video frames with the Structure-from-Motion framework, and a multiscale curvature classification was used to separate points on the ground, where wild leek grows, from above-ground points belonging to the forest canopy. Five-cm resolution orthomosaics were created from the ground points, and a threshold value of 0.350 for the green chromatic coordinate (GCC) was applied to delineate wild leek from wood, leaves, and other plants on the forest floor, with an F1-score of 0.69 and 0.76 for two different areas. The GCC index was most effective in delineating bigger patches, and therefore often misclassified patches smaller than 30 cm in diameter. Although short flight times and long data processing times are presently technical challenges to upscaling, the low cost and high accuracy of UAV imagery provides a promising method for monitoring the spatial distribution of this endangered species.
منابع مشابه
UAV-Borne Profiling Radar for Forest Research
Microwave Radar is an attractive solution for forest mapping and inventories because microwave signals penetrates into the forest canopy and the backscattering signal can provide information regarding the whole forest structure. Satellite-borne and airborne imaging radars have been used in forest resources mapping for many decades. However, their accuracy with respect to the main forest invento...
متن کاملIntroducing the improved Forest Canopy density (FCD) model for frequent assessment of Hyrcanian forest
Mapping of forest extent is a prerequisite to acquire quantitative and qualitative information about forests and to formulate management and conservation strategies. forest canopy density (FCD) model is one of the useful RS methods for forest mapping using satellite images. One of the most serious challenges in FCD model is the weakness in the calculation of canopy density in low density forest...
متن کاملEvaluating the Performance of Photogrammetric Products Using Fixed-Wing UAV Imagery over a Mixed Conifer-Broadleaf Forest: Comparison with Airborne Laser Scanning
Unmanned aerial vehicles (UAVs) and digital photogrammetric techniques are two recent advances in remote sensing (RS) technology that are emerging as alternatives to high-cost airborne laser scanning (ALS) data sources. Despite the potential of UAVs in forestry applications, very few studies have included detailed analyses of UAV photogrammetric products at larger scales or over a range of fore...
متن کاملUAV LiDAR for below-canopy forest surveys
Remote sensing tools are increasingly being used to survey forest structure. Most current methods rely on GPS signals, which are available in above-canopy surveys or in below-canopy surveys of open forests, but may be absent in below-canopy environments of dense forests. We trialled a technology that facilitates mobile surveys in GPS-denied below-canopy forest environments. The platform consist...
متن کاملEstimation of canopy attributes in beech forests using true colour digital images from a small fixed-wing UAV
Accurate estimates of forest canopy are essential for the characterization of forest ecosystems. Remotelysensed techniques provide a unique way to obtain estimates over spatially extensive areas, but their application is limited by the spectral and temporal resolution available from these systems, which is often not suited to meet regional or local objectives. The use of unmanned aerial vehicle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018