0 Extrema of p - energy functional on a Finsler manifold

نویسندگان

  • C. Udrişte
  • M. Neagu
چکیده

In §1 the authors present the basic properties of the scalar product along a curve on a Finsler manifold. In §2 they investigate the variational formulae for the p-energy functional (p ∈ R − {0}). This concept generalises the notions of length (p = 1) and energy (p = 2) of a curve. §3 analyses the extrema of p-energy when the Finsler space has constant curvature. (F3) the fundamental tensor g ij (x, y) = 1 2 ∂ 2 F 2 ∂y i ∂y j is positive definite. (F4) F is C ∞ at every point (x, y) ∈ T M with y = 0 and continuous at every (x, 0) ∈ T M. Then, the absolute Finsler energy is F 2 (x, y) = g ij (x, y)y i y j. Let c : [a, b] → M be a C ∞ regular curve on M. For any two vector fields X(t) = X i (t) ∂ ∂x i c(t) , Y (t) = Y i (t) ∂ ∂x i c(t) along the curve c, we introduce [1], [6] the scalar product g(X, Y)(c(t)) = g ij (c(t), ˙ c(t))X i (t)Y j (t) along the curve c. Remarks. i) If X = Y , then we obtain X = g(X, X). ii) The vector fields X and Y are orthogonal along the curve c and we write X⊥Y iff g(X, Y) = 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morse Theory of Causal Geodesics in a Stationary Spacetime via Morse Theory of Geodesics of a Finsler Metric

We show that the index of a lightlike geodesic in a conformally standard stationary spacetime (M0 × R, g) is equal to the index of its spatial projection as a geodesic of a Finsler metric F on M0 associated to (M0×R, g). Moreover we obtain the Morse relations of lightlike geodesics connecting a point p to a curve γ(s) = (q0, s) by using Morse theory on the Finsler manifold (M0, F ). To this end...

متن کامل

Finsler manifolds with non-Riemannian holonomy

The aim of this paper is to show that holonomy properties of Finsler manifolds can be very different from those of Riemannian manifolds. We prove that the holonomy group of a positive definite non-Riemannian Finsler manifold of non-zero constant curvature with dimension > 2 cannot be a compact Lie group. Hence this holonomy group does not occur as the holonomy group of any Riemannian manifold. ...

متن کامل

On the Energy Functional on Finsler Manifolds and Applications to Stationary Spacetimes

In this paper we first study some global properties of the energy functional on a nonreversible Finsler manifold. In particular we present a fully detailed proof of the Palais–Smale condition under the completeness of the Finsler metric. Moreover we define a Finsler metric of Randers type, which we call Fermat metric, associated to a conformally standard stationary spacetime. We shall study the...

متن کامل

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000