Mutations in type I and type IV pilus biosynthetic genes affect twitching motility rates in Xylella fastidiosa.

نویسندگان

  • Leonardo De La Fuente
  • Thomas J Burr
  • Harvey C Hoch
چکیده

Xylella fastidiosa possesses both type I and type IV pili at the same cell pole. By use of a microfluidic device, the speed of twitching movement by wild-type cells on a glass surface against the flow direction of media was measured as 0.86 (standard error [SE], 0.04) microm min(-1). A type I pilus mutant (fimA) moved six times faster (4.85 [SE, 0.27] microm min(-1)) and a pilY1 mutant moved three times slower (0.28 [SE, 0.03] microm min(-1)) than wild-type cells. Type I pili slow the rate of movement, while the putative type IV pilus protein PilY1 is likely important for attachment to surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE ROLES THAT DIFFERENT PILI CLASSES IN XYLELLA FASTIDIOSA PLAY IN COLONIZATION OF GRAPEVINES AND PIERCE’S DISEASE PATHOGENESIS Project Leaders:

Type I and type IV pili of Xylella fastidiosa play different roles in twitching motility, biofilm formation, and cell-cell aggregation. Thirty twitching mutants were generated with an EZ::TN transposome system and type IV pilus-associated genes were identified, including fimT, pilX, pilY1, pilO, and pilR. Mutations in all resulted in a twitch-minus phenotype except that pilY1 mutant was twitchi...

متن کامل

EXPLOITING A CHEMOSENSORY SIGNAL TRANSDUCTION SYSTEM THAT CONTROLS TWITCHING MOTILITY AND VIRULENCE IN XYLELLA FASTIDIOSA Principal Investigator:

Previously we demonstrated that twitching motility in Xylella fastidiosa is dependent on an operon, named Pil-Chp, encoding signal transduction pathway proteins (PilG, PilI, PilJ, PilL, ChpB and ChpC), which is related to the system that controls flagella movement in Escherichia coli. We report three advances in examining this chemotaxis system. First, we have examined the operon genes more clo...

متن کامل

CONTINUED ASSESSMENT OF XYLELLA FASTIDIOSA FIMBRIAL ADHESINS AS IMPORTANT VIRULENCE FACTORS IN PIERCE’S DISEASE: INFLUENCE OF XYLEM SAP Principal Investigator:

Specific biological characteristics of Xylella fastidiosa (Xf) Temecula were investigated in microfluidic flow chambers in vitro by examining the effect of xylem sap from Pierce’s disease (PD) susceptible V. vinifera and resistant V. smalliana grapevines on Xf cell growth, aggregation, biofilm formation, and motility. Growth of Xf was observed in both V. smalliana and V. vinifera xylem saps in ...

متن کامل

EVALUATING THE ROLES OF PILI IN TWITCHING AND LONG DISTANCE MOVEMENT OF XYLELLA FASTIDIOSA IN GRAPE XYLEM AND IN THE COLONIZATION OF SHARPSHOOTER FOREGUT Project Leaders:

Xylella fastidiosa cells were shown to exhibit twitching motility ‘upstream’ in microfabricated ‘artificial xylem vessels’. Such motility is due to extension and retraction of type IV pili present on the poles of the bacteria. Importantly, such upstream migration was subsequently demonstrated in planta. A survey of isolates from California, Texas and South Carolina revealed that all possessed m...

متن کامل

Suppression of an absolute defect in type IV pilus biogenesis by loss-of-function mutations in pilT, a twitching motility gene in Neisseria gonorrhoeae.

Type IV pili of Neisseria gonorrhoeae, the Gram-negative etiologic agent of gonorrhea, facilitate colonization of the human host. Gonococcal PilT, a protein belonging to a large family of molecules sharing a highly conserved nucleotide binding domain motif, has been shown to be dispensable for organelle biogenesis but essential for twitching motility and competence for genetic transformation. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 20  شماره 

صفحات  -

تاریخ انتشار 2007