Protein threading using context-specific alignment potential

نویسندگان

  • Jianzhu Ma
  • Sheng Wang
  • Feng Zhao
  • Jinbo Xu
چکیده

MOTIVATION Template-based modeling, including homology modeling and protein threading, is the most reliable method for protein 3D structure prediction. However, alignment errors and template selection are still the main bottleneck for current template-base modeling methods, especially when proteins under consideration are distantly related. RESULTS We present a novel context-specific alignment potential for protein threading, including alignment and template selection. Our alignment potential measures the log-odds ratio of one alignment being generated from two related proteins to being generated from two unrelated proteins, by integrating both local and global context-specific information. The local alignment potential quantifies how well one sequence residue can be aligned to one template residue based on context-specific information of the residues. The global alignment potential quantifies how well two sequence residues can be placed into two template positions at a given distance, again based on context-specific information. By accounting for correlation among a variety of protein features and making use of context-specific information, our alignment potential is much more sensitive than the widely used context-independent or profile-based scoring function. Experimental results confirm that our method generates significantly better alignments and threading results than the best profile-based methods on several large benchmarks. Our method works particularly well for distantly related proteins or proteins with sparse sequence profiles because of the effective integration of context-specific, structure and global information. AVAILABILITY http://raptorx.uchicago.edu/download/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein structure prediction by threading. Why it works and why it does not.

We developed a novel Monte Carlo threading algorithm which allows gaps and insertions both in the template structure and threaded sequence. The algorithm is able to find the optimal sequence-structure alignment and sample suboptimal alignments. Using our algorithm we performed sequence-structure alignments for a number of examples for three protein folds (ubiquitin, immunoglobulin and globin) u...

متن کامل

Protein threading using PROSPECT: design and evaluation.

The computer system PROSPECT for the protein fold recognition using the threading method is described and evaluated in this article. For a given target protein sequence and a template structure, PROSPECT guarantees to find a globally optimal threading alignment between the two. The scoring function for a threading alignment employed in PROSPECT consists of four additive terms: i) a mutation ter...

متن کامل

A new approach to prediction of short-range conformational propensities in proteins

MOTIVATION Knowledge-based potentials are valuable tools for protein structure modeling and evaluation of the quality of the structure prediction obtained by a variety of methods. Potentials of such type could be significantly enhanced by a proper exploitation of the evolutionary information encoded in related protein sequences. The new potentials could be valuable components of threading algor...

متن کامل

Protein Threading Based on Multiple Protein Structure Alignment.

Protein threading, a method employed in protein three-dimensional (3D) structure prediction was only proposed in the early 1990's although predicting protein 3D structure from its given amino acid sequence has been around since 1970's. Here we describe a protein threading method/system that we have developed based on multiple protein structure alignment. In order to compute multiple structure a...

متن کامل

Training Protein Threading Models using Structural SVMs

Protein threading is the problem of inferring the structure of a protein from its sequence by matching the sequence against a set of known structures. Unlike conventional sequence to sequence alignment tasks, alignment models for threading can exploit a rich set of features derived from the geometry of the known structure. To make use of these complex and interdependent features, we explore the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2013