Wettability Switching Techniques on Superhydrophobic Surfaces

نویسندگان

  • Nicolas Verplanck
  • Yannick Coffinier
  • Vincent Thomy
  • Rabah Boukherroub
چکیده

The wetting properties of superhydrophobic surfaces have generated worldwide research interest. A water drop on these surfaces forms a nearly perfect spherical pearl. Superhydrophobic materials hold considerable promise for potential applications ranging from self cleaning surfaces, completely water impermeable textiles to low cost energy displacement of liquids in lab-on-chip devices. However, the dynamic modification of the liquid droplets behavior and in particular of their wetting properties on these surfaces is still a challenging issue. In this review, after a brief overview on superhydrophobic states definition, the techniques leading to the modification of wettability behavior on superhydrophobic surfaces under specific conditions: optical, magnetic, mechanical, chemical, thermal are discussed. Finally, a focus on electrowetting is made from historical phenomenon pointed out some decades ago on classical planar hydrophobic surfaces to recent breakthrough obtained on superhydrophobic surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less...

متن کامل

Wettability influences cell behavior on superhydrophobic surfaces with different topographies.

Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavior on superhydrophobic surfaces is influenced by surface topography and polymer type. Biomimetic ...

متن کامل

Reversible Conversion of Conducting Polymer Films from Superhydrophobic to SuperhydrophilicThis work was supported by a US NSF grant (CCF0330451) and a US DoD/DARPA/DMEA grant. We thank A. Yu for help on the conductivity measurement of the samples

Controlling the wettability of a solid surface is important for myriad applications, ranging from self-cleaning surfaces to microfluidics to biomedicine. Recently, a variety of smart surfaces with reversibly switchable wettability have been developed. The reversible switching is realized through the adjustment of electrical potential, temperature, 8] and light illumination, adsorption of biopol...

متن کامل

بررسی اثر پلی‌اتیلن گلایکول بر رفتار ترشوندگی سطوح آبگریز ZnO تهیه شده به‌روش رسوب‌دهی حمام شیمیایی

A superhydrophobic ZnO surface was prepared on the stainless steel mesh by a one-step chemical bath deposition method without chemical post-treatment. The effect of adding polyethylene glycol 6000 (PEG 6000) as an organic additive and the type of the alkaline agent were investigated on the morphological and wettability properties of ZnO surfaces. The prepared surfaces were characterized by X-ra...

متن کامل

Two-Dimensional Open Microfluidic Devices by Tuning the Wettability on Patterned Superhydrophobic Polymeric Surface

We present a simple and economical method to produce a potential open microfluidic polymeric device. Biomimetic superhydrophobic surfaces were prepared on polystyrene using a phase separation methodology. Patterned two-dimensional channels were imprinted on the superhydrophobic substrates by exposing the surface to plasma or UV–ozone radiation. The wettability of the channels could be precisely...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007