Caenorhabditis elegans num-1 negatively regulates endocytic recycling.
نویسندگان
چکیده
Much of the material taken into cells by endocytosis is rapidly returned to the plasma membrane by the endocytic recycling pathway. Although recycling is vital for the correct localization of cell membrane receptors and lipids, the molecular mechanisms that regulate recycling are only partially understood. Here we show that in Caenorhabditis elegans endocytic recycling is inhibited by NUM-1A, the nematode Numb homolog. NUM-1AGFP fusion protein is localized to the baso-lateral surfaces of many polarized epithelial cells, including the hypodermis and the intestine. We show that increased NUM-1A levels cause morphological defects in these cells similar to those caused by loss-of-function mutations in rme-1, a positive regulator of recycling in both C. elegans and mammals. We describe the isolation of worms lacking num-1A activity and show that, consistent with a model in which NUM-1A negatively regulates recycling in the intestine, loss of num-1A function bypasses the requirement for RME-1. Genetic epistasis analysis with rab-10, which is required at an early part of the recycling pathway, suggests that loss of num-1A function does not affect the uptake of material by endocytosis but rather inhibits baso-lateral recycling downstream of rab-10.
منابع مشابه
EHBP-1 Functions with RAB-10 during Endocytic Recycling in Caenorhabditis elegans
Caenorhabditis elegans RAB-10 functions in endocytic recycling in polarized cells, regulating basolateral cargo transport in the intestinal epithelia and postsynaptic cargo transport in interneurons. A similar role was found for mammalian Rab10 in MDCK cells, suggesting that a conserved mechanism regulates these related pathways in metazoans. In a yeast two-hybrid screen for binding partners of...
متن کاملRAB-10 Is Required for Endocytic Recycling in the Caenorhabditis elegans Intestine□D
The endocytic pathway of eukaryotes is essential for the internalization and trafficking of macromolecules, fluid, membranes, and membrane proteins. One of the most enigmatic aspects of this process is endocytic recycling, the return of macromolecules (often receptors) and fluid from endosomes to the plasma membrane. We have previously shown that the EH-domain protein RME-1 is a critical regula...
متن کاملRAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine.
The endocytic pathway of eukaryotes is essential for the internalization and trafficking of macromolecules, fluid, membranes, and membrane proteins. One of the most enigmatic aspects of this process is endocytic recycling, the return of macromolecules (often receptors) and fluid from endosomes to the plasma membrane. We have previously shown that the EH-domain protein RME-1 is a critical regula...
متن کاملInactivation of Caenorhabditis elegans aminopeptidase DNPP-1 restores endocytic sorting and recycling in tat-1 mutants
In Caenorhabditis elegans, the P4-ATPase TAT-1 and its chaperone, the Cdc50 family protein CHAT-1, maintain membrane phosphatidylserine (PS) asymmetry, which is required for membrane tubulation during endocytic sorting and recycling. Loss of tat-1 and chat-1 disrupts endocytic sorting, leading to defects in both cargo recycling and degradation. In this study, we identified the C. elegans aspart...
متن کاملArp2/3 mediates early endosome dynamics necessary for the maintenance of PAR asymmetry in Caenorhabditis elegans
The widely conserved Arp2/3 complex regulates branched actin dynamics that are necessary for a variety of cellular processes. In Caenorhabditis elegans, the actin cytoskeleton has been extensively characterized in its role in establishing PAR asymmetry; however, the contributions of actin to the maintenance of polarity before the onset of mitosis are less clear. Endocytic recycling has emerged ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 179 1 شماره
صفحات -
تاریخ انتشار 2008