Mitochondrial Reactive Oxygen Species Mediate Lysophosphatidylcholine-Induced Endothelial Cell Activation.

نویسندگان

  • Xinyuan Li
  • Pu Fang
  • Yafeng Li
  • Yin-Ming Kuo
  • Andrew J Andrews
  • Gayani Nanayakkara
  • Candice Johnson
  • Hangfei Fu
  • Huimin Shan
  • Fuyong Du
  • Nicholas E Hoffman
  • Daohai Yu
  • Satoru Eguchi
  • Muniswamy Madesh
  • Walter J Koch
  • Jianxin Sun
  • Xiaohua Jiang
  • Hong Wang
  • Xiaofeng Yang
چکیده

OBJECTIVE Hyperlipidemia-induced endothelial cell (EC) activation is considered as an initial event responsible for monocyte recruitment in atherogenesis. However, it remains poorly defined what is the mechanism underlying hyperlipidemia-induced EC activation. Here, we tested a novel hypothesis that mitochondrial reactive oxygen species (mtROS) serve as signaling mediators for EC activation in early atherosclerosis. APPROACH AND RESULTS Metabolomics and transcriptomics analyses revealed that several lysophosphatidylcholine (LPC) species, such as 16:0, 18:0, and 18:1, and their processing enzymes, including Pla2g7 and Pla2g4c, were significantly induced in the aortas of apolipoprotein E knockout mice during early atherosclerosis. Using electron spin resonance and flow cytometry, we found that LPC 16:0, 18:0, and 18:1 induced mtROS in primary human aortic ECs, independently of the activities of nicotinamide adenine dinucleotide phosphate oxidase. Mechanistically, using confocal microscopy and Seahorse XF mitochondrial analyzer, we showed that LPC induced mtROS via unique calcium entry-mediated increase of proton leak and mitochondrial O2 reduction. In addition, we found that mtROS contributed to LPC-induced EC activation by regulating nuclear binding of activator protein-1 and inducing intercellular adhesion molecule-1 gene expression in vitro. Furthermore, we showed that mtROS inhibitor MitoTEMPO suppressed EC activation and aortic monocyte recruitment in apolipoprotein E knockout mice using intravital microscopy and flow cytometry methods. CONCLUSIONS ATP synthesis-uncoupled, but proton leak-coupled, mtROS increase mediates LPC-induced EC activation during early atherosclerosis. These results indicate that mitochondrial antioxidants are promising therapies for vascular inflammation and cardiovascular diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superoxide is a potential culprit of caspase-3 dependent endothelial cell death induced by lysophosphatidylcholine.

Oxidative stress in the vascular wall has intimately been implicated in the apoptosis of human umbilical vein endothelial cells (HUVECs) by lysophosphatidylcholine (LPC). However, the major type of reactive oxygen species (ROS) in this apoptotic signaling pathway remains to be clarified. In this study, we report that superoxide mediate LPC-induced caspase-3 dependent apoptosis in cultured HUVEC...

متن کامل

The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species

Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothe...

متن کامل

Reactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells

Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...

متن کامل

Depolarization of mitochondria in endothelial cells promotes cerebral artery vasodilation by activation of nitric oxide synthase.

OBJECTIVE Mitochondrial depolarization after ATP-sensitive potassium channel activation has been shown to induce cerebral vasodilation by the generation of calcium sparks in smooth muscle. It is unclear, however, whether mitochondrial depolarization in endothelial cells is capable of promoting vasodilation by releasing vasoactive factors. Therefore, we studied the effect of endothelial mitochon...

متن کامل

Regulation of VEGF-induced endothelial cell migration by mitochondrial reactive oxygen species.

Endothelial migration is a crucial aspect of a variety of physiologic and pathologic conditions including atherosclerosis and vascular repair. Reactive oxygen species (ROS) function as second messengers during endothelial migration. Multiple intracellular sources of ROS are regulated by cellular context, external stimulus, and the microenvironment. However, the predominant source of ROS during ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 36 6  شماره 

صفحات  -

تاریخ انتشار 2016