Terahertz response of microfluidic-jetted three-dimensional flexible metamaterials.
نویسندگان
چکیده
We demonstrate the fabrication and characterization of three-dimensional (3D) metamaterials in the terahertz (THz) range using the microfluidic-jetted technique. This technique has proven a convenient technique to fabricate metamaterial structures at the micrometer scale. The metamaterials are fabricated using dodecanethiol functionalized gold nanoparticles on flexible polyimide substrates. The metamaterials consist of alternate layers of single split-ring resonator and microstrip arrays that are stacked to form a 3D metamaterial medium. The fabricated metamaterials, with lattice sizes of 180 microm, are characterized using THz time-domain spectroscopy within 0.1 to 2 THz in the transmission mode. Numerical simulation is performed to calculate the effective metamaterials parameter.
منابع مشابه
Hybrid three-dimensional dual- and broadband optically tunable terahertz metamaterials
The optically tunable properties of the hybrid three-dimensional (3D) metamaterials with dual- and broadband response frequencies are theoretically investigated in the terahertz spectrum. The planar double-split-ring resonators (DSRRs) and the standup double-split-ring resonators are fabricated on a sapphire substrate, forming a 3D array structures. The bi-anisotropy of the hybrid 3D metamateri...
متن کاملNonlinear terahertz devices utilizing semiconducting plasmonic metamaterials
The development of responsive metamaterials has enabled the realization of compact tunable photonic devices capable of manipulating the amplitude, polarization, wave vector and frequency of light. Integration of semiconductors into the active regions of metallic resonators is a proven approach for creating nonlinear metamaterials through optoelectronic control of the semiconductor carrier densi...
متن کاملStacked-and-drawn metamaterials with magnetic resonances in the terahertz range.
We present a novel method for producing drawn metamaterials containing slotted metallic cylinder resonators, possessing strong magnetic resonances in the terahertz range. The resulting structures are either spooled to produce a 2-dimensional metamaterial monolayer, or stacked to produce three-dimensional multi-layered metamaterials. We experimentally investigate the effects of the resonator siz...
متن کاملFlexible terahertz metamaterials for dual-axis strain sensing.
Utilizing an elastic polymer, we design and experimentally demonstrate a four-fold symmetric flexible metamaterial operating at terahertz frequencies. The fabricated metamaterials exhibit good stretchability and recoverability. Two independent resonances can be observed when the structure is probed with linearly polarized terahertz waves in two orthogonal axes. Applying a stretching force along...
متن کاملFabrication of 2D and 3D Electromagnetic Metamaterials for the Terahertz Range
This paper addresses the 2D and 3D microand nanofabrication of ElectroMagnetic MetaMaterials (EM) for the terahertz range. EM refers to artificial composite materials which consist of a collection of repeated metal elements designed to have a strong response to applied electromagnetic fields, so that near resonance both the effective permittivity and magnetic permeability μ become simultaneousl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 49 8 شماره
صفحات -
تاریخ انتشار 2010