Energy-Efficient Speed Profile Approximation: An Optimal Switching Region-Based Approach with Adaptive Resolution
نویسندگان
چکیده
Speed profile optimization plays an important role in optimal train control. Considering the characteristics of an electrical locomotive with regenerative braking, this paper proposes a new algorithm for target speed profile approximation. This paper makes the following three contributions: First, it proves that under a certain calculation precision, there is an optimal coast-brake switching region—not just a point where the train should be switched from coasting mode to braking mode. This is very useful in engineering applications. Second, the paper analyzes the influence of regenerative braking on the optimal coast-brake switching region and proposes an approximate linear relationship between the optimal switching region and the regeneration efficiency. Third, the paper presents an average speed equivalent algorithm for local speed profile optimization in steep sections. In addition, this paper simplifies the proof of the optimality of smooth running on a non-steep track in two steps. The effects on energy consumption from two important factors (optimal coast and running time) are systematically analyzed. Extensive simulations verify these points of view and demonstrate that the proposed approximation approach is computationally efficient and achieves sufficient engineering accuracy.
منابع مشابه
Transmission switching cost modeling and determination candidate Lines for participation in joint energy and reserve markets
There is a great resolution calling for smart grids in recent years. Introduction of new technologies, that make the network flexible and controllable, is a main part of smart grid concept and a key factor to its success. Transmission network as a part of system network has drawn less attention. Transmission switching as a transmission service can release us from load shedding and remove the co...
متن کاملTrain Energy-efficient Operation with Stochastic Resistance Coefficient
Train energy-efficient operation problem applies the optimal control theory to optimize the speed profile between successive stations such that the tracking energy is minimized. Traditional studies show that the optimal speed profile consists of four phases including maximum acceleration, cruising, coasting and maximum braking. Based on the assumption that the resistance coefficients are random...
متن کاملDesign, Development and Test of a Practical Train Energy Optimization using GA-PSO Algorithm
One of the strategies for reduction of energy consumption in railway systems is to execute efficient driving by presenting optimized speed profile considering running time, energy consumption and practical constraints. In this paper, by using real route data, an approach based on combination of Genetic and Particle swarm (GA-PSO) algorithms in order to optimize the fuel consumption is provided....
متن کاملMathematical Analysis of Optimal Tracking Interval Management for Power Efficient Target Tracking Wireless Sensor Networks
In this paper, we study the problem of power efficient tracking interval management for distributed target tracking wireless sensor networks (WSNs). We first analyze the performance of a distributed target tracking network with one moving object, using a quantitative mathematical analysis. We show that previously proposed algorithms are efficient only for constant average velocity objects howev...
متن کاملFinding the Optimal Place of Sensors for a 3-D Damped Wave Equation by using Measure Approach
In this paper, we model and solve the problem of optimal shaping and placing to put sensors for a 3-D wave equation with constant damping in a bounded open connected subset of 3-dimensional space. The place of sensor is modeled by a subdomain of this region of a given measure. By using an approach based on the embedding process, first, the system is formulated in variational form;...
متن کامل