Coin state properties in quantum walks

نویسندگان

  • A. M. C. Souza
  • R. F. S. Andrade
چکیده

Recent experimental advances have measured individual coin components in discrete time quantum walks, which have not received the due attention in most theoretical studies on the theme. Here is presented a detailed investigation of the properties of M, the difference between square modulus of coin states of discrete quantum walks on a linear chain. Local expectation values are obtained in terms of real and imaginary parts of the Fourier transformed wave function. A simple expression is found for the average difference between coin states in terms of an angle θ gauging the coin operator and its initial state. These results are corroborated by numerical integration of dynamical equations in real space. The local dependence is characterized both by large and short period modulations. The richness of revealed patterns suggests that the amount of information stored and retrieved from quantum walks is significantly enhanced if M is taken into account.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit distributions for different forms of four-state quantum walks on a two-dimensional lattice

Long-time limit distributions are key quantities for understanding the asymptotic dynamics of quantum walks, and they are known for most forms of one-dimensional quantum walks using two-state coin systems. For two-dimensional quantum walks using a four-state coin system, however, the only known limit distribution is for a walk using a parameterized Grover coin operation and analytical complexit...

متن کامل

Implementing Parrondo’s paradox with two-coin quantum walks

Parrondo's paradox is ubiquitous in games, ratchets and random walks. The apparent paradox, devised by J. M. R. Parrondo, that two losing games A and B can produce a winning outcome has been adapted in many physical and biological systems to explain their working. However, proposals on demonstrating Parrondo's paradox using quantum walks failed for a large number of steps. In this work, we show...

متن کامل

Two examples of discrete-time quantum walks taking continuous steps

This note introduces some examples of quantum random walks in R and proves the weak convergence of their rescaled n-step densities. One of the examples is called the Plancherel quantum walk because the “quantum coin flip” is the Fourier Integral (or Plancherel) Transform. The other examples are the Birkhoff quantum walks, so named because the coin flips are effected by means of measure preservi...

متن کامل

Stability of point spectrum for three-state quantum walks on a line

Evolution operators of certain quantum walks possess, apart from the continuous part, also point spectrum. The existence of eigenvalues and the corresponding stationary states lead to partial trapping of the walker in the vicinity of the origin. We analyze the stability of this feature for three-state quantum walks on a line subject to homogenous coin deformations. We find two classes of coin o...

متن کامل

Workshop of Quantum Simulation and Quantum Walks

[Invited talk] Novel approach for the implementation of quantum walks in linear optics setups Quantum walks without coin: a link between the properties of a graph and the admissible walks over it

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013