Convergence rates to the discrete travelling wave for relaxation schemes
نویسنده
چکیده
This paper is concerned with the asymptotic convergence of numerical solutions toward discrete travelling waves for a class of relaxation numerical schemes, approximating the scalar conservation law. It is shown that if the initial perturbations possess some algebraic decay in space, then the numerical solutions converge to the discrete travelling wave at a corresponding algebraic rate in time, provided the sums of the initial perturbations for the u-component equal zero. A polynomially weighted l2 norm on the perturbation of the discrete travelling wave and a technical energy method are applied to obtain the asymptotic convergence rate.
منابع مشابه
Convergence of relaxation schemes to the equations of elastodynamics
We study the effect of approximation matrices to semi-discrete relaxation schemes for the equations of one-dimensional elastodynamics. We consider a semi-discrete relaxation scheme and establish convergence using the Lp theory of compensated compactness. Then we study the convergence of an associated relaxation-diffusion system, inspired by the scheme. Numerical comparisons of fully-discrete sc...
متن کاملConvergence and Error Estimates of Relaxation Schemes for Multidimensional Conservation Laws
M. A. Katsoulakis, G. Kossioris and Ch. Makridakis Abstract. We study discrete and semidiscrete relaxation schemes for multidimensional scalar conservation laws. We show convergence of the relaxation schemes to the entropy solution of the conservation law and derive error estimates that exhibit the precise interaction between the relaxation time and the space/time discretization parameters of t...
متن کاملGeneralized iterative methods for solving double saddle point problem
In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...
متن کاملA modified elite ACO based avoiding premature convergence for travelling salesmen problem
The Travelling Salesmen Problem (TSP) is one of the most important and famous combinational optimization problems that aim to find the shortest tour. In this problem, the salesman starts to move from an arbitrary place called depot and after visiting all nodes, finally comes back to depot. Solving this problem seems hard because program statement is simple and leads this problem belonging to NP...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 69 شماره
صفحات -
تاریخ انتشار 2000