Possible contributions of CPG activity to the control of rhythmic human arm movement.

نویسندگان

  • E Paul Zehr
  • Timothy J Carroll
  • Romeo Chua
  • David F Collins
  • Alain Frigon
  • Carlos Haridas
  • Sandra R Hundza
  • Aiko Kido Thompson
چکیده

There is extensive modulation of cutaneous and H-reflexes during rhythmic leg movement in humans. Mechanisms controlling reflex modulation (e.g., phase- and task-dependent modulation, and reflex reversal) during leg movements have been ascribed to the activity of spinal central pattern generating (CPG) networks and peripheral feedback. Our working hypothesis has been that neural mechanisms (i.e., CPGs) controlling rhythmic movement are conserved between the human lumbar and cervical spinal cord. Thus reflex modulation during rhythmic arm movement should be similar to that for rhythmic leg movement. This hypothesis has been tested by studying the regulation of reflexes in arm muscles during rhythmic arm cycling and treadmill walking. This paper reviews recent studies that have revealed that reflexes in arm muscles show modulation within the movement cycle (e.g., phase-dependency and reflex reversal) and between static and rhythmic motor tasks (e.g., task-dependency). It is concluded that reflexes are modulated similarly during rhythmic movement of the upper and lower limbs, suggesting similar motor control mechanisms. One notable exception to this pattern is a failure of contralateral arm movement to modulate reflex amplitude, which contrasts directly with observations from the leg. Overall, the data support the hypothesis that CPG activity contributes to the neural control of rhythmic arm movement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forward and backward arm cycling are regulated by equivalent neural mechanisms.

It was shown some time ago that cutaneous reflexes were phase-reversed when comparing forward and backward treadmill walking. Activity of central-pattern-generating networks (CPG) regulating neural activity for locomotion was suggested as a mechanism involved in this "program reversal." We have been investigating the neural control of arm movements and the role for CPG mechanisms in regulating ...

متن کامل

Altered gravity highlights central pattern generator mechanisms.

In many nonprimate species, rhythmic patterns of activity such as locomotion or respiration are generated by neural networks at the spinal level. These neural networks are called central pattern generators (CPGs). Under normal gravitational conditions, the energy efficiency and the robustness of human rhythmic movements are due to the ability of CPGs to drive the system at a pace close to its r...

متن کامل

Corticospinal excitability is lower during rhythmic arm movement than during tonic contraction Running Head: Motor cortex contributions to rhythmic arm movement

Humans perform rhythmic, locomotor movements with the arms and legs every day. Studies using reflexes to probe the functional role of the CNS suggest that spinal circuits are an important part of the neural control system for rhythmic arm cycling and walking. Here, by studying motor evoked potentials (MEPs) in response to transcranial magnetic stimulation (TMS) of the motor cortex, and H-reflex...

متن کامل

Neural control of rhythmic arm cycling after stroke.

Disordered reflex activity and alterations in the neural control of walking have been observed after stroke. In addition to impairments in leg movement that affect locomotor ability after stroke, significant impairments are also seen in the arms. Altered neural control in the upper limb can often lead to altered tone and spasticity resulting in impaired coordination and flexion contractures. We...

متن کامل

Effect of Resisted Bimanual Therapy With Auditory Cues on Arm Function, Balance, and Endurance in Stroke Survivors: A Pilot Study

Objectives: Upper limb motor impairment causes limited activities of daily living in stroke survivors. Bimanual therapy is based on Bimanual movement that facilitates cortical balancing by simultaneous movement of paretic and non-paretic arms while performing a task. Studies aimed at exploring the effects of resisted Bimanual therapy with rhythmic auditory cues on arm function, balance, and end...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Canadian journal of physiology and pharmacology

دوره 82 8-9  شماره 

صفحات  -

تاریخ انتشار 2004