Hardness and Non-Approximability of Bregman Clustering Problems

نویسندگان

  • Marcel R. Ackermann
  • Johannes Blömer
  • Christoph Scholz
چکیده

We prove the computational hardness of three k-clustering problems using an (almost) arbitrary Bregman divergence as dissimilarity measure: (a) The Bregman k-center problem, where the objective is to find a set of centers that minimizes the maximum dissimilarity of any input point towards its closest center, and (b) the Bregman k-diameter problem, where the objective is to minimize the maximum dissimilarity between pairs of points from the same cluster, and (c) the Bregman k-median problem, where the objective is to find a set of centers that minimizes the average dissimilarity of any input point towards its closest center. We show that solving these problems is NP-hard, and that it is even NP-hard to approximate a solution of (a) and (b) within a factor of (a) 3.32 and (b) 3.87, respectively. To obtain our results, we give a gap-preserving reduction from the Euclidean k-center (k-diameter, kmeans) problem to the Bregman k-center (k-diameter, k-median) problem. This reduction combines the technique of Mahalanobis-similarity from Ackermann et al. (SODA ’08) with a reduction already used by Chaudhuri and McGregor (COLT ’08) to show the non-approximability of the Kullback-Leibler k-center problem, and a recent reduction given by Vattani to prove the NP-hardness of the Euclidean k-means problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation Algorithms for Bregman Clustering Co-clustering and Tensor Clustering

The Euclidean K-means problem is fundamental to clustering and over the years it has been intensely investigated. More recently, generalizations such as Bregman k-means [8], co-clustering [10], and tensor (multi-way) clustering [40] have also gained prominence. A well-known computational difficulty encountered by these clustering problems is the NP-Hardness of the associated optimization task, ...

متن کامل

1 0 Fe b 20 09 Approximation Algorithms for Bregman Co - clustering and Tensor Clustering ∗

In the past few years powerful generalizations to the Euclidean k-means problem have been made, such as Bregman clustering [7], co-clustering (i.e., simultaneous clustering of rows and columns of an input matrix) [9, 17], and tensor clustering [8, 32]. Like k-means, these more general problems also suffer from the NP-hardness of the associated optimization. Researchers have developed approximat...

متن کامل

ar X iv : 0 81 2 . 03 89 v 3 [ cs . D S ] 1 5 M ay 2 00 9 Approximation Algorithms for Bregman Co - clustering and Tensor Clustering

In the past few years powerful generalizations to the Euclidean k-means problem have been made, such as Bregman clustering [7], co-clustering (i.e., simultaneous clustering of rows and columns of an input matrix) [9, 18], and tensor clustering [8, 34]. Like k-means, these more general problems also suffer from the NP-hardness of the associated optimization. Researchers have developed approximat...

متن کامل

Approximation Algorithms for Bregman Co-clustering and Tensor Clustering

In the past few years powerful generalizations to the Euclidean k-means problem have been made, such as Bregman clustering [7], co-clustering (i.e., simultaneous clustering of rows and columns of an input matrix) [9, 18], and tensor clustering [8, 34]. Like k-means, these more general problems also suffer from the NP-hardness of the associated optimization. Researchers have developed approximat...

متن کامل

Hardness and Approximability in Multi-Objective Optimization

We systematically study the hardness and the approximability of combinatorial multiobjective NP optimization problems (multi-objective problems, for short). We define solution notions that precisely capture the typical algorithmic tasks in multiobjective optimization. These notions inherit polynomial-time Turing reducibility from multivalued functions, which allows us to compare the solution no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011