Single-molecule imaging of translational output from individual RNA granules in neurons
نویسندگان
چکیده
Dendritic RNAs are localized and translated in RNA granules. Here we use single-molecule imaging to count the number of RNA molecules in each granule and to record translation output from each granule using Venus fluorescent protein as a reporter. For RNAs encoding activity-regulated cytoskeletal-associated protein (ARC) or fragile X mental retardation protein (FMRP), translation events are spatially clustered near individual granules, and translational output from individual granules is either sporadic or bursty. The probability of bursty translation is greater for Venus-FMRP RNA than for Venus-ARC RNA and is increased in Fmr1-knockout neurons compared to wild-type neurons. Dihydroxyphenylglycine (DHPG) increases the rate of sporadic translation and decreases bursty translation for Venus-FMRP and Venus-ARC RNAs. Single-molecule imaging of translation in individual granules provides new insight into molecular, spatial, and temporal regulation of translation in granules.
منابع مشابه
A novel RNA-binding protein in neuronal RNA granules: regulatory machinery for local translation.
Local translation in neuronal dendrites is an important basis for long-term synaptic plasticity, and RNA granules in the dendrites are involved in the local translation. Here, we identify RNG105 (RNA granule protein 105), a novel RNA-binding protein, as a component of the RNA granules in dendrites of hippocampal neurons. The RNG105-localizing RNA granules contain mRNAs, the translational produc...
متن کاملNeuronal RNA Granules: Movers and Makers
RNA localization contributes to cell polarity and synaptic plasticity. Evidence will be discussed that RNA transport and local translation in neurons may be more intimately linked than originally thought. Second, neuronal RNA granules, originally defined as intermediates involved in mRNA transport, are much more diverse in their composition and functions than previously anticipated. We focus on...
متن کاملCyclin B1 mRNA translation is temporally controlled through formation and disassembly of RNA granules
Temporal control of messenger RNA (mRNA) translation is an important mechanism for regulating cellular, neuronal, and developmental processes. However, mechanisms that coordinate timing of translational activation remain largely unresolved. Full-grown oocytes arrest meiosis at prophase I and deposit dormant mRNAs. Of these, translational control of cyclin B1 mRNA in response to maturation-induc...
متن کاملTranslocation of RNA granules in living neurons.
Sorting of RNAs to specific subcellular loci occurs in diverse settings from fly oocytes to mammalian neurons. Using the membrane-permeable nucleic acid stain SYTO 14, we directly visualized the translocation of endogenous RNA in living cells. Labeled RNA was distributed nonrandomly as discrete granules in neuronal processes. The labeled granules colocalized with poly(A+) mRNA, with the 60S rib...
متن کاملTranslational Control of Synaptic Plasticity
Activity-dependent and synapse-specific translation of mRNAs is required for long-term changes in synaptic strength (or efficacy). However, many of the components mediating repression, transport and activation of mRNAs are unknown. Translational control in neurons is a highly conserved process and mediated by a ribonuclear particle (RNP). This study shows that RNPs in Drosophila neurons are sim...
متن کامل