MG-63 cells proliferation following various types of mechanical stimulation on cells by auxetic hybrid scaffolds
نویسندگان
چکیده
BACKGROUND Mechanical properties and cyto-compatibility of a composite scaffold which possessed negative (-) Poisson's ratio (NPR) was investigated for effective load transfer from auxetic scaffold to cell. METHODS Organic/inorganic composite scaffolds were prepared by mixing hydroxyapatite (HA) to poly(lactide-co-glycolide) (PLGA). To induce NPR in composite scaffold, 3-directional volumetric compression was applied during the scaffold fabrication at adequate temperature(60°C). The pore size of scaffold ranged between 355-400 μm. RESULTS Poisson's ratios of NPR scaffolds and control scaffolds were -0.07 and 0.16 at 10 % strain. For stable physical stimulating to loaded cells, ceramic/polymer composite scaffold was prepared by incorporating HA in PLGA to increase mechanical strength. Compressive strength of the HA/PLGA composite scaffold (15 wt. % HA to PLGA) was about 21.7 % higher than that of PLGA-only scaffold. The recovery rates of the NPR composite scaffold after applying compression in the dry and wet states were 90 % and 60 %, respectively. Also the composite scaffold was shown to have better hydrophilicity (61.9°) compared to the PLGA-only scaffolds (65.3°). Cell proliferation of osteoblast-like cell line (MG-63) in the composite scaffold was 20 % higher than in PLGA-only scaffold at static compressive stimulation. For dynamic compressive stimulation (15 min cyclic interval), cell proliferation in the composite scaffold was 2 times higher than that of in PLGA-only scaffold. In conclusion, NPR composite (HA/PLGA) scaffold was effective in isotropic compressive load delivery for osteogenic cell proliferation. CONCLUSION This composite scaffold with stimulation can be used as tissue engineered scaffold and dynamic cell culture system for bone tissue regeneration.
منابع مشابه
MG-63 osteoblast-like cell proliferation on auxetic PLGA scaffold with mechanical stimulation for bone tissue regeneration
BACKGROUND Auxetic scaffolds (experimental) was fabricated by using poly(D, L-lactic-co-glycolic acid), 50:50, (PLGA) for effective bone cell proliferation with mechanical stimulation. METHODS Negative Poisson's ratio in scaffold, 3-directional volumetric compression was applied during the scaffold fabrication at adequate temperature (60 °C). The pore size of scaffold ranged between 355 and 4...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملPreparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells
Objective(s): In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA), poly (vinyl alcohol) (PVA) and calcium carbonate nanoparticles (nCaP). The surface morphology of prepared nanofibrou...
متن کاملComparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کامل