Radical routes to interstellar glycolaldehyde. The possibility of stereoselectivity in gas-phase polymerization reactions involving CH(2)O and ˙CH(2)OH.
نویسندگان
چکیده
A previous report that the interstellar molecule glycolaldehyde (HOCH(2)CHO) can be made from hydroxymethylene (HOCH:) and formaldehyde has been revisited at the CCSD(T)/6-311++G(3df,2p)//MP2/6-311++G(3df,2p) level of theory. This reaction competes with the formation of acetic acid and methylformate, molecules which have also been detected in interstellar clouds. Other possible modes of formation of glycolaldehyde by radical/radical reactions have been shown to be viable theoretically as follows: HO˙+˙CH2CHO -->HOCH2CHO [ΔG(Γ)(298K)=-303kJ mol⁻¹] HOCH2˙+˙CHO-->HOCH2CHO (-259kJ mol⁻¹). The species in these two processes are known interstellar molecules. Key radicals ˙CH(2)CHO and ˙CH(2)OH in these sequences have been shown to be stable for the microsecond duration of neutralization/reionization experiments in the dual collision cells of a VG ZAB 2HF mass spectrometer. The polymerization reaction HOCH(2)CH˙OH + nCH(2)O → HOCH(2)[CH(OH)](n)˙CHOH (n = 1 to 3) has been studied theoretically and shown to be energetically feasible, as is the cyclization reaction of HOCH(2)[(CH(2)OH)(4)]˙CHOH (in the presence of one molecule of water at the reacting centre) to form glucose. The probability of such a reaction sequence is small even if polymerization were to occur in interstellar ice containing a significant concentration of CH(2)O. The large number of stereoisomers produced by such a reaction sequence makes the formation of a particular sugar, again for example glucose, an inefficient synthesis. The possibility of stereoselectivity occurring during the polymerization was investigated for two diastereoisomers of HOCH(2)[(CHOH)](2)˙CHOH. No significant difference was found in the transition state energies for addition of CH(2)O to these two diastereoisomers, but a barrier difference of 12 kJ mol(-1) was found for the H transfer reactions ˙OCH(2)[(CHOH)](2)CH(2)OH → HOCH(2)[(CHOH)(2)˙CHOH of the two diastereoisomers.
منابع مشابه
Radical formation of amino acid precursors in interstellar regions? Ser, Cys and Asp.
It is proposed that the glycine precursor NH(2)CH(2)CN may be synthesised in interstellar dust clouds by the radical combination reactions NH(2)˙ + ˙CH(2)CN → NH(2)CH(2)CN (ΔG = -302 kJ mol(-1)) and/or NH(2)CH(2)˙ + ˙CN → NH(2)CH(2)CN (ΔG = -414 kJ mol(-1)). All calculations at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31+G(d) level of theory. This paper extends that concept to radical/radical coupling ...
متن کاملHydrogen tunnelling influences the isomerisation of some small radicals of interstellar importance. A theoretical investigation.
Hydrogen atom isomerisations within five radical systems (i.e., CH(3)˙NH/˙CH(2)NH; CH(3)O˙/˙CH(2)OH; ˙CH(2)SH/CH(3)S˙; CH(3)CO(2)˙/˙CH(2)CO(2)H; and HOCH(2)CH(2)O˙/HO˙CHCH(2)OH) have been studied via quantum-mechanical hydrogen tunnelling through reaction barriers. The reaction rates including hydrogen tunnelling effects have been calculated for these gas phase reactions at temperatures from 30...
متن کاملWater-catalyzed hydrolysis of the radical cation of ketene in the gas phase: theory and experiment.
Both theoretical and experimental investigations are reported for the gas-phase hydrolysis of the radical cation of ketene, H(2)CCO(*+). Density functional theory (DFT) with the B3LYP/6-311++G(d,p) method indicates that a second water molecule is required as a catalyst for the addition of water across the C=O bond in H(2)CCO(*+) by eliminating the activation barrier for the conversion of [H(2)C...
متن کاملDirect detection of OH formation in the reactions of HO2 with CH3 C(O)O2 and other substituted peroxy radicals
Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Abstract Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Abstract This work details the first direct observation of OH as a product from (R1): HO 2 +CH 3 C(O)O 2 → (products), which has generally been considered an atmospheric radical termination process. The technique...
متن کاملUltrafast photochemistry of methyl hydroperoxide on ice particles.
Simulations show that photodissociation of methyl hydroperoxide, CH(3)OOH, on water clusters produces a surprisingly wide range of products on a subpicosecond time scale, pointing to the possibility of complex photodegradation pathways for organic peroxides on aerosols and water droplets. Dynamics are computed at several excitation energies at 50 K using a semiempirical PM3 potential surface. C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 8 20 شماره
صفحات -
تاریخ انتشار 2010