Topological Selectivity in Xer Site-Specific Recombination
نویسندگان
چکیده
The product topology of Xer-mediated site-specific recombination at plasmid sites has been determined. The product of deletion at pSC101 psi is a right-handed antiparallel 4-noded catenane. The ColE1 cer deletion product has an identical topology, except that only one pair of strands is exchanged. These specific product topologies imply that the productive synaptic complex and the strand exchange mechanism have fixed topologies. Further analysis suggests that synapsis traps exactly three negative supercoils between recombining sites, and that strand exchange introduces a further negative topological node in the deletion reaction. We present a model in which the requirement for a specific synaptic stucture, with two recombination sites interwrapped around the accessory proteins ArgR and PepA, ensures that recombination only occurs efficiently between directly repeated sites on the same DNA molecule.
منابع مشابه
Determinants of selectivity in Xer site-specific recombination.
A remarkable property of some DNA-binding proteins that can interact with and pair distant DNA segments is that they mediate their biological function only when their binding sites are arranged in a specific configuration. Xer site-specific recombination at natural plasmid recombination sites (e.g., cer in ColE1) is preferentially intramolecular, converting dimers to monomers. In contrast, Xer ...
متن کاملmwr Xer site-specific recombination is hypersensitive to DNA supercoiling
The multiresistance plasmid pJHCMW1, first identified in a Klebsiella pneumoniae strain isolated from a neonate with meningitis, includes a Xer recombination site, mwr, with unique characteristics. Efficiency of resolution of mwr-containing plasmid dimers is strongly dependent on the osmotic pressure of the growth medium. An increase in supercoiling density of plasmid DNA was observed as the os...
متن کاملFtsK-dependent and -independent pathways of Xer site-specific recombination.
Homologous recombination between circular chromosomes generates dimers that cannot be segregated at cell division. Escherichia coli Xer site-specific recombination converts chromosomal and plasmid dimers to monomers. Two recombinases, XerC and XerD, act at the E. coli chromosomal recombination site, dif, and at related sites in plasmids. We demonstrate that Xer recombination at plasmid dif site...
متن کاملThe Unconventional Xer Recombination Machinery of Streptococci/Lactococci
Homologous recombination between circular sister chromosomes during DNA replication in bacteria can generate chromosome dimers that must be resolved into monomers prior to cell division. In Escherichia coli, dimer resolution is achieved by site-specific recombination, Xer recombination, involving two paralogous tyrosine recombinases, XerC and XerD, and a 28-bp recombination site (dif) located a...
متن کاملThe topology of plasmid-monomerizing Xer site-specific recombination.
Xer site-specific recombination at cer and psi converts bacterial plasmid multimers into monomers so that they can be efficiently segregated to both daughter cells at cell division. Recombination is catalysed by the XerC and XerD recombinases acting at ~30 bp core sites, and is regulated by the action of accessory proteins bound to accessory DNA sequences adjacent to the core sites. Recombinati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 88 شماره
صفحات -
تاریخ انتشار 1997