Adapting Document Ranking to Users' Preferences Using Click-Through Data

نویسندگان

  • Min Zhao
  • Hang Li
  • Adwait Ratnaparkhi
  • Hsiao-Wuen Hon
  • Jue Wang
چکیده

1* Min Zhao is currently researcher at NEC Lab China, Beijing. Abstract. This paper proposes a new approach to ranking the documents retrieved by a search engine using click-through data. The goal is to make the final ranked list of documents accurately represent users’ preferences reflected in the click-through data. Our approach combines the ranking result of a traditional IR algorithm (BM25) with that given by a machine learning algorithm (Naïve Bayes). The machine learning algorithm is trained on clickthrough data (queries and their associated documents), while the IR algorithm runs over the document collection. We consider several alternative strategies for combining the result of using click-through data and that of using document data. Experimental results confirm that any method of using click-through data greatly improves the preference ranking, over the method of using BM25 alone. We found that a linear combination of scores of Naïve Bayes and scores of BM25 performs the best for the task. At the same time, we found that the preference ranking methods can preserve relevance ranking, i.e., the preference ranking methods can perform as well as BM25 for relevance ranking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Ensemble Click Model for Web Document Ranking

Annually, web search engine providers spend more and more money on documents ranking in search engines result pages (SERP). Click models provide advantageous information for ranking documents in SERPs through modeling interactions among users and search engines. Here, three modules are employed to create a hybrid click model; the first module is a PGM-based click model, the second module in a d...

متن کامل

Improving the Information Retrieval System through Effective Evaluation of Web Page in Client Side Analysis

To improve the information retrieval system for user, programmers have to learn a user's preferences accurately. In order to optimize retrieval accuracy, modeling the users appropriately based on their preferences and personalizing search according to each individual user are important. Implicit feedback information improves the user modeling process. The advantage of implicit modeling is effec...

متن کامل

RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features

Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...

متن کامل

Spying Out Accurate User Preferences for Search Engine Adaptation

Most existing search engines employ static ranking algorithms that do not adapt to the specific needs of users. Recently, some researchers have studied the use of clickthrough data to adapt a search engine’s ranking function. Clickthrough data indicate for each query the results that are clicked by users. As a kind of implicit relevance feedback information, clickthrough data can easily be coll...

متن کامل

Session Based Click Features for Recency Ranking

Recency ranking refers to the ranking of web results by accounting for both relevance and freshness. This is particularly important for “recency sensitive” queries such as breaking news queries. In this study, we propose a set of novel click features to improve machine learned recency ranking. Rather than computing simple aggregate click through rates, we derive these features using the tempora...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006