Quantification of Global Protein Disulfides and Thiol-Protein Mixed Disulfides to Study the Protein Dethiolation Mechanisms

نویسندگان

  • Lucia Coppo
  • Raffaella Priora
  • Sonia Salzano
  • Pietro Ghezzi
  • Paolo Di Simplicio
چکیده

The redox state of cellular thiols is widely studied because it was recently linked to many different diseases and pathologies. In this work we quantified the concentrations of protein disulfides (PSSP) and thiol-protein mixed disulfides (XSSP) in rat tissues (liver, kidney and heart) and cells (Raw 264.7) by an improved method of XSSP and PSSP determination after oxidative stress induced by diamide. Under native and denaturing conditions, a thiol block by N-ethymaleimide was introduced to avoid thiol exchange reaction activations by protein SH groups (PSH) (PSH + XSSP ↔ PSSP + XSH) and alterations of original XSSP/PSSP levels. Low molecular weight thiols (XSH) and PSH were respectively measured by HPLC on supernatants and on corresponding pellets by DTNB (Ellman’s reagent) after dithiothreitol reduction. PSSP concentrations of liver, heart and kidney were respectively 0.304, 0.605 and 0.785 μmoles/g and after diamide exposure they were significantly augmented of about 65% 70% in liver and heart, but not in the kidney. Normal XSSP, that were 6 20 times lower than normal PSSP were induced by diamide in liver and heart of about 40 times, but not in kidney. Thermodynamic criteria regarding the pKa values of thiols engaged as PSSP and GSSP were used to interpret dethiolation mechanisms via thiol exchange reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying the global cellular thiol-disulfide status.

It is widely accepted that the redox status of protein thiols is of central importance to protein structure and folding and that glutathione is an important low-molecular-mass redox regulator. However, the total cellular pools of thiols and disulfides and their relative abundance have never been determined. In this study, we have assembled a global picture of the cellular thiol-disulfide status...

متن کامل

Microwave assisted oxidation coupling of thiols to symmetrical disulfides with tripropylammonium fluorochromate (VI) (TPAFC)

Tripropylammonium fluorochromate(VI) (TPAFC), is an efficient and new reagent, which isprepared easily and oxidizes thiols to the corresponding disulfides, quickly. The reactions areperformed cleanly and are controlled to stop at the disulfide stage, without over-oxidation andside products. Coupling of thiols to their corresponding disulfides, are studied in solution atroom temperature and in s...

متن کامل

A comparative study between transition-metal-substituted Keggin-type tungstosilicates supported on anatase leaf as catalyst for synthesis of symmetrical disulfides

Transition-metal-substituted  (TMS)  polyoxometalates  of  the  general  formula  [SiW9M3O39], (where M = first row transition metal), has been synthesized and supported on anatase by sol–gel method under oil-bath condition. The tetrabutylammonium (TBA) salts of the Keggin-type polyoxotungstates  [SiW9M3O39],  (M = VII, CrII, MnII,  FeII CoII  and NiII),  proved  to  be  green, reusable,  and  ...

متن کامل

S-glutathionylation in human platelets by a thiol-disulfide exchange-independent mechanism.

Protein-glutathione mixed disulfide formation was investigated in vitro by exposure of human platelets to the thiol-specific oxidant azodicarboxylic acid-bis-dimethylamide (diamide). We found that diamide causes a decrease in the reduced form of glutathione (GSH), paralleled by an increase in protein-GSH mixed disulfides (S-glutathionylated proteins), which was not accompanied by any significan...

متن کامل

Redox regulation by reversible protein S-thiolation in bacteria

Low molecular weight (LMW) thiols function as thiol-redox buffers to maintain the reduced state of the cytoplasm. The best studied LMW thiol is the tripeptide glutathione (GSH) present in all eukaryotes and Gram-negative bacteria. Firmicutes bacteria, including Bacillus and Staphylococcus species utilize the redox buffer bacillithiol (BSH) while Actinomycetes produce the related redox buffer my...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013