Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis.
نویسندگان
چکیده
BACKGROUND Virulence in the pathogenic bacterium Yersinia pestis, causative agent of bubonic plague, has been correlated with the biosynthesis and transport of an iron-chelating siderophore, yersiniabactin, which is induced under iron-starvation conditions. Initial DNA sequencing suggested that this system is highly conserved among the pathogenic Yersinia. Yersiniabactin contains a phenolic group and three five-membered thiazole heterocycles that serve as iron ligands. RESULTS The entire Y. pestis yersiniabactin region has been sequenced. Sequence analysis of yersiniabactin biosynthetic regions (irp2-ybtE and ybtS) reveals a strategy for siderophore production using a mixed polyketide synthase/nonribosomal peptide synthetase complex formed between HMWP1 and HMWP2 (encoded by irp1 and irp2). The complex contains 16 domains, five of them variants of phosphopantetheine-modified peptidyl carrier protein or acyl carrier protein domains. HMWP1 and HMWP2 also contain methyltransferase and heterocyclization domains. Mutating ybtS revealed that this gene encodes a protein essential for yersiniabactin synthesis. CONCLUSIONS The HMWP1 and HMWP2 domain organization suggests that the yersiniabactin siderophore is assembled in a modular fashion, in which a series of covalent intermediates are passed from the amino terminus of HMWP2 to the carboxyl terminus of HMWP1. Biosynthetic labeling studies indicate that the three yersiniabactin methyl moieties are donated by S-adenosylmethionine and that the linker between the thiazoline and thiazolidine rings is derived from malonyl-CoA. The salicylate moiety is probably synthesized using the aromatic amino-acid biosynthetic pathway, the final step of which converts chorismate to salicylate. YbtS might be necessary for converting chorismate to salicylate.
منابع مشابه
Role of the Yersinia pestis Yersiniabactin Iron Acquisition System in the Incidence of Flea-Borne Plague
Plague is a flea-borne zoonosis caused by the bacterium Yersinia pestis. Y. pestis mutants lacking the yersiniabactin (Ybt) siderophore-based iron transport system are avirulent when inoculated intradermally but fully virulent when inoculated intravenously in mice. Presumably, Ybt is required to provide sufficient iron at the peripheral injection site, suggesting that Ybt would be an essential ...
متن کاملThe yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague.
Iron acquisition from the host is an important step in the pathogenic process. While Yersinia pestis has multiple iron transporters, the yersiniabactin (Ybt) siderophore-dependent system plays a major role in iron acquisition in vitro and in vivo. In this study, we determined that the Ybt system is required for the use of iron bound by transferrin and lactoferrin and examined the importance of ...
متن کاملThe Yfe and Feo transporters are involved in microaerobic growth and virulence of Yersinia pestis in bubonic plague.
The Yfe/Sit and Feo transport systems are important for the growth of a variety of bacteria. In Yersinia pestis, single mutations in either yfe or feo result in reduced growth under static (limited aeration), iron-chelated conditions, while a yfe feo double mutant has a more severe growth defect. These growth defects were not observed when bacteria were grown under aerobic conditions or in stra...
متن کاملYersinia pestis YbtU and YbtT are involved in synthesis of the siderophore yersiniabactin but have different effects on regulation.
One prerequisite for the virulence of Yersinia pestis, causative agent of bubonic plague, is the yersiniabactin (Ybt) siderophore-dependent iron transport system that is encoded within a high-pathogenicity island (HPI) within the pgm locus of the Y. pestis chromosome. Several gene products within the HPI have demonstrated functions in the synthesis or transport of Ybt. Here we examine the roles...
متن کاملHunger for iron: the alternative siderophore iron scavenging systems in highly virulent Yersinia
Low molecular weight siderophores are used by many living organisms to scavenge scarcely available ferric iron. Presence of at least a single siderophore-based iron acquisition system is usually acknowledged as a virulence-associated trait and a pre-requisite to become an efficient and successful pathogen. Currently, it is assumed that yersiniabactin (Ybt) is the solely functional endogenous si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry & biology
دوره 5 10 شماره
صفحات -
تاریخ انتشار 1998