Poincaré Index and Periodic Solutions of Perturbed Autonomous Systems

نویسنده

  • O. YU. MAKARENKOV
چکیده

Classical conditions for the bifurcation of periodic solutions in perturbed auto-oscillating and conservative systems go back to Malkin and Mel’nikov, respectively. These authors’ papers were based on the Lyapunov–Schmidt reduction and the implicit function theorem, which lead to the requirement that both the cycles and the zeros of the bifurcation functions be simple. In this paper a geometric approach is put forward which does not assume these requirements, but imposes a certain condition on the Poincaré index of a generating cycle with respect to some auxiliary vector field. The approach is based on calculating the topological degree of the Poincaré operator of the perturbed system with respect to interior and exterior neighbourhoods of a generating cycle, as a consequence of which the conclusion of the main theorem guarantees bifurcation of a certain number of periodic solutions towards the interior of the cycle, and of a certain number of periodic solutions towards the exterior of the cycle. Concrete examples are given, where this approach either establishes bifurcation of a greater number of periodic solutions compared with the known classical results, or provides additional information on the location of these solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS

In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.  

متن کامل

PERIODIC SOLUTIONS OF CERTAIN THREE DIMENSIONAL AUTONOMOUS SYSTEMS

There has been extensive work on the existence of periodic solutions for nonlinear second order autonomous differantial equations, but little work regarding the third order problems. The popular Poincare-Bendixon theorem applies well to the former but not the latter (see [2] and [3]). We give a necessary condition for the existence of periodic solutions for the third order autonomous system...

متن کامل

PERIODIC SOLUTIONS IN CERTAIN CLASS OF 3- DIMENSION DISCONTINUOUS AUTONOMOUS SYSTEMS

In the present paper the linear oscillator in R3 with z =constanthas been considered. The aim is to determine the necessary conditions forthe persistence of periodic solutions under discontinuous perturbations. A newapproach based on a computational method has been used. At the end weapply our method on an example.

متن کامل

On the Rate of Convergence of Periodic Solutions in Perturbed Autonomous Systems as the Perturbation Vanishes

We consider an autonomous system in Rn having a limit cycle x0 of period T > 0 which is nondegenerate in a suitable sense. We then consider the perturbed system obtained by adding to the autonomous system a T -periodic, not necessarily differentiable, term whose amplitude tends to 0 as a small parameter ε > 0 tends to 0. Assuming the existence of a T periodic solution xε of the perturbed system...

متن کامل

Perturbed damped pendulum: finding periodic solutions via averaging method

Using the damped pendulum model we introduce the averaging method to study the periodic solutions of dynamical systems with small non–autonomous perturbation. We provide sufficient conditions for the existence of periodic solutions with small amplitude of the non–linear perturbed damped pendulum. The averaging method provides a useful means to study dynamical systems, accessible to Master and P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009