The impact of ATP-sensitive K+ channel subtype selectivity of insulin secretagogues for the coronary vasculature and the myocardium.
نویسندگان
چکیده
Insulin secretagogues (sulfonylureas and glinides) increase insulin secretion by closing the ATP-sensitive K+ channel (KATP channel) in the pancreatic beta-cell membrane. KATP channels subserve important functions also in the heart. First, KATP channels in coronary myocytes contribute to the control of coronary blood flow at rest and in hypoxia. Second, KATP channels in the sarcolemma of cardiomyocytes (sarcKATP channels) are required for adaptation of the heart to stress. In addition, the opening of sarcKATP channels and of KATP channels in the inner membrane of mitochondria (mitoKATP channels) plays a central role in ischemic preconditioning. Opening of sarcKATP channels also underlies the ST-segment elevation of the electrocardiogram, the primary diagnostic tool for initiation of lysis therapy in acute myocardial infarction. Therefore, inhibition of cardiovascular KATP channels by insulin secretagogues is considered to increase cardiovascular risk. Electrophysiological experiments have shown that the secretagogues differ in their selectivity for the pancreatic over the cardiovascular KATP channels, being either highly selective (approximately 1,000x; short sulfonylureas such as nateglinide and mitiglinide), moderately selective (10-20x; long sulfonylureas such as glibenclamide [glyburide]), or essentially nonselective (<2x; repaglinide). New binding studies presented here give broadly similar results. In clinical studies, these differences are not yet taken into account. The hypothesis that the in vitro selectivity of the insulin secretagogues is of importance for the cardiovascular outcome of diabetic patients with coronary artery disease needs to be tested.
منابع مشابه
Effect of ATP-Dependent K+ Channel Openers and Blockers on Serum Concentration of Aldosterone in Rats
There are many reports for involvement of ATP-sensitive potassium channels in pancreatic, cardiac and vascular smooth muscle cells. This study examined the effect of single doses of K+ channel openers diazoxide, minoxidil and K+ channel blockers chlorpropamide, glibenclamide on serum concentration of aldosterone in male rats. Blood samples were obtained 60 minutes after drug treatment and serum...
متن کاملThe effects of ATP-dependent potassium channel opener; pinacidil, and blocker; glibenclamide, on the ischemia induced arrhythmia in partial and complete ligation of coronary artery in rats
Objective(s): Electrical inhomogeneity between ischemic and non ischemic myocardium is the basis of arrhythmia which occurs following coronary artery occlusion. The leakage of potassium from the ischemic region to the non ischemic region is very effective in the generation of these arrhythmias. The aim of this study is to research the effect of ATP-dependent potassium (KATP) channel blocker (gl...
متن کاملSynthesis and Vasorelaxant Effect of 9-aryl-1,8-acridinediones as Potassium Channel Openers in Isolated Rat Aorta
ATP-sensitive potassium (KATP) channel openers have a relaxation effect due to the lower cellular membrane potential and inhibit calcium influx. There has been considerable interest in exploring KATP channel openers in the treatment of various diseases such as cardiovascular, cerebrovascular, and urinary system disease and premature labor. The purpose of this study was to synthesize 3,3,6,6-tet...
متن کاملSynthesis and Vasorelaxant Effect of 9-aryl-1,8-acridinediones as Potassium Channel Openers in Isolated Rat Aorta
ATP-sensitive potassium (KATP) channel openers have a relaxation effect due to the lower cellular membrane potential and inhibit calcium influx. There has been considerable interest in exploring KATP channel openers in the treatment of various diseases such as cardiovascular, cerebrovascular, and urinary system disease and premature labor. The purpose of this study was to synthesize 3,3,6,6-tet...
متن کاملPii: S0003-4975(02)04689-1
Adenosine triphosphate (ATP)–sensitive potassium (KATP) channels allow coupling of membrane potential to cellular metabolic status. Two KATP channel subtypes coexist in the myocardium, with one subtype located in the sarcolemma (sarcKATP) membrane and the other in the inner membrane of the mitochondria (mitoKATP). The KATP channels can be pharmacologically modulated by a family of structurally ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 53 Suppl 3 شماره
صفحات -
تاریخ انتشار 2004