Role of outer-membrane cytochromes MtrC and OmcA in the biomineralization of ferrihydrite by Shewanella oneidensis MR-1.
نویسندگان
چکیده
In an effort to improve the understanding of electron transfer mechanisms at the microbe-mineral interface, Shewanella oneidensis MR-1 mutants with in-frame deletions of outer-membrane cytochromes (OMCs), MtrC and OmcA, were characterized for the ability to reduce ferrihydrite (FH) using a suite of microscopic, spectroscopic, and biochemical techniques. Analysis of purified recombinant proteins demonstrated that both cytochromes undergo rapid electron exchange with FH in vitro with MtrC displaying faster transfer rates than OmcA. Immunomicroscopy with cytochrome-specific antibodies revealed that MtrC co-localizes with iron solids on the cell surface while OmcA exhibits a more diffuse distribution over the cell surface. After 3-day incubation of MR-1 with FH, pronounced reductive transformation mineral products were visible by electron microscopy. Upon further incubation, the predominant phases identified were ferrous phosphates including vivianite [Fe(3)(PO(4))(2)x8H(2)O] and a switzerite-like phase [Mn(3),Fe(3)(PO(4))(2)x7H(2)O] that were heavily colonized by MR-1 cells with surface-exposed outer-membrane cytochromes. In the absence of both MtrC and OmcA, the cells ability to reduce FH was significantly hindered and no mineral transformation products were detected. Collectively, these results highlight the importance of the outer-membrane cytochromes in the reductive transformation of FH and support a role for direct electron transfer from the OMCs at the cell surface to the mineral.
منابع مشابه
Isolation of a high-affinity functional protein complex between OmcA and MtrC: Two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1.
Shewanella oneidensis MR-1 is a facultatively anaerobic bacterium capable of using soluble and insoluble forms of manganese [Mn(III/IV)] and iron [Fe(III)] as terminal electron acceptors during anaerobic respiration. To assess the structural association of two outer membrane-associated c-type decaheme cytochromes (i.e., OmcA [SO1779] and MtrC [SO1778]) and their ability to reduce soluble Fe(III...
متن کاملAntibody recognition force microscopy shows that outer membrane cytochromes OmcA and MtrC are expressed on the exterior surface of Shewanella oneidensis MR-1.
Antibody recognition force microscopy showed that OmcA and MtrC are expressed on the exterior surface of living Shewanella oneidensis MR-1 cells when Fe(III), including solid-phase hematite (Fe(2)O(3)), was the terminal electron acceptor. OmcA was localized to the interface between the cell and mineral. MtrC displayed a more uniform distribution across the cell surface. Both cytochromes were as...
متن کاملPhotoreduction of Shewanella oneidensis Extracellular Cytochromes by Organic Chromophores and Dye‐Sensitized TiO2
The transfer of photoenergized electrons from extracellular photosensitizers across a bacterial cell envelope to drive intracellular chemical transformations represents an attractive way to harness nature's catalytic machinery for solar-assisted chemical synthesis. In Shewanella oneidensis MR-1 (MR-1), trans-outer-membrane electron transfer is performed by the extracellular cytochromes MtrC and...
متن کاملSpecific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1.
Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration. A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface. Atomic force microscopy (AFM) was used to detect whether a specific bond forms be...
متن کاملMolecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1
In the absence of O(2) and other electron acceptors, the Gram-negative bacterium Shewanella oneidensis MR-1 can use ferric [Fe(III)] (oxy)(hydr)oxide minerals as the terminal electron acceptors for anaerobic respiration. At circumneutral pH and in the absence of strong complexing ligands, Fe(III) oxides are relatively insoluble and thus are external to the bacterial cells. S. oneidensis MR-1 an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Geobiology
دوره 8 1 شماره
صفحات -
تاریخ انتشار 2010