Support Approximations Using Bonferroni-Type Inequalities
نویسندگان
چکیده
منابع مشابه
Upper Bounds for Bivariate Bonferroni-type Inequalities Using Consecutive Events
Let A1, A2, . . . , Am and B1, B2, . . . , Bn be two sequences of events on the same probability space. Let X = Xm(A) and Y = Yn(B), respectively, denote the numbers of those Ai’s and Bj ’s which occur. We establish new bivariate Bonferroni-type inequalities using consecutive events and deduce a known result.
متن کاملBonferroni-type inequalities and binomially bounded functions
We present a unified approach to an important subclass of Bonferroni-type inequalities by considering so-called binomially bounded functions. Our main result associates with each binomially bounded function a Bonferroni-type inequality. By appropriately choosing this function, several well-known and new results are deduced.
متن کاملOptimized Bonferroni Approximations of Distributionally Robust Joint Chance Constraints
A distributionally robust joint chance constraint involves a set of uncertain linear inequalities which can be violated up to a given probability threshold , over a given family of probability distributions of the uncertain parameters. A conservative approximation of a joint chance constraint, often referred to as a Bonferroni approximation, uses the union bound to approximate the joint chance ...
متن کاملBONFERRONI-TYPE INEQUALITIES; CHEBYSHEV-TYPE INEQUALITIES FOR THE DISTRIBUTIONS ON [0, n]
Abs t rac t . An elementary "majorant-minorant method" to construct the most stringent Bonferroni-type inequalities is presented. These are essentially Chebyshev-type inequalities for discrete probability distributions on the set {0, 1 , . . . , n}, where n is the number of concerned events, and polynomials with specific properties on the set lead to the inequalities. All the known resuits are ...
متن کاملInequalities of Bonferroni-galambos Type with Applications to the Tutte Polynomial and the Chromatic Polynomial
In this paper, we generalize the classical Bonferroni inequalities and their improvements by Galambos to sums of type ∑ I⊆U (−1)|I|f(I) where U is a finite set and f : 2 → R. The result is applied to the Tutte polynomial of a matroid and the chromatic polynomial of a graph.
متن کامل