Escherichia coli–Mediated Impairment of Ureteric Contractility Is Uropathogenic E. coli Specific
نویسندگان
چکیده
BACKGROUND Ureters are fundamental for keeping kidneys free from uropathogenic Escherichia coli (UPEC), but we have shown that 2 strains (J96 and 536) can subvert this role and reduce ureteric contractility. To determine whether this is (1) a widespread feature of UPEC, (2) exhibited only by UPEC, and (3) dependent upon type 1 fimbriae, we analyzed strains representing epidemiologically important multilocus sequence types ST131, ST73, and ST95 and non-UPEC E. coli. METHODS Contractility and calcium transients in intact rat ureters were compared between strains. Mannose and fim mutants were used to investigate the role of type 1 fimbriae. RESULTS Non-UPEC had no significant effect on contractility, with a mean decrease after 8 hours of 8.8%, compared with 8.8% in controls. UPEC effects on contractility were strain specific, with decreases from 9.47% to 96.7%. Mannose inhibited the effects of the most potent strains (CFT073 and UTI89) but had variable effects among other UPEC strains. Mutation and complementation studies showed that the effects of the UTI89 cystitis isolate were fimH dependent. CONCLUSIONS We find that (1) non-UPEC do not affect ureteric contractility, (2) impairment of contractility is a common feature of UPEC, and (3) the mechanism varies between strains, but for the most potent UPEC type 1 fimbriae are involved.
منابع مشابه
Modulation of ureteric Ca signaling and contractility in humans and rats by uropathogenic E. coli.
Ascending urinary tract infections, a significant cause of kidney damage, are predominantly caused by uropathogenic Escherichia coli (UPEC). However, the role and mechanism of changes in ureteric function during infection are poorly understood. We therefore investigated the effects of UPEC on Ca signaling and contractions in rat (n = 17) and human (n = 6) ureters. Ca transients and force were m...
متن کاملStudy of class 1 integrons in multidrug-resistant uropathogenic Escherichia coli isolated from different hospitals in Karachi
Objective(s): Escherichia coli is the key pathogen in the family producing ESBL (extended spectrum β-lactamase) and associated with community-acquired infections. Therefore, this study was planned to determine the antibiotic susceptibility pattern of uropathogenic E. coli, prevalence of the ESBL gene group and class 1 integrons.Materials and Methods: Clinical isolates of uropathogenic E. coli w...
متن کاملAntibiotic Resistance Patterns in Enteric and Uropathogenic Strains of Escherichia Coli in Children
Abstract Background and Objective: Escherichia coli is the most common cause of urinary tract infections in children and the leading cause of intra-abdominal infections (peritonitis and abscess) followed intestinal injuries. Urinary tract infection, including cystitis and pyelonephritis, is a common childhood infection. E. coli causes more than 90 percent of the community acquired and 50% of ho...
متن کاملInvestigation of Biofilm ability by Microtiter Plate Method in uropathogenic Escherichia coli isolated from patients with urinary tract infection with urinary stones.
Abstract: Background and Aim: Urinary tract infections are one of the most commonly reported nosocomial infections caused by colonization of E. coli in the mucosal epithelium and in the formation of microbial biofilms, which damage the host tissue. The aim of this study was to determine the amount of biofilm formation of uropathogenic E. coli based on urinary tract stones of people with urin...
متن کاملPrevalence of aac(3)-IIa, aph(3)-Ia and ant(2)- Ia Genes among Uropathogenic Escherichia Coli Isolates
Abstract Background and Objective: Escherichia coli, one of the most common causative agents of urinary tract infections (UTIs) acquired from community and hospital, has developed multiple resistances to various antibiotics such as aminoglycosides. The main resistance mechanism to aminoglycosides is inactivation of these drugs by a variety of acetyltransferase, nucleotidyltransferase, and phosp...
متن کامل