Weak Solutions for a Hyperbolic System with Unilateral Constraint and Mass Loss

نویسنده

  • F. Berthelin
چکیده

We consider isentropic gas dynamics equations with unilateral constraint on the density and mass loss. The and pressureless pressure laws are considered. We propose an entropy weak formulation of the system that incorporates the constraint and Lagrange multiplier, for which we prove weak stability and existence of solutions. The nonzero pressure model is approximated by a kinetic BGK relaxation model, while the pressureless model is approximated by a sticky-blocks dynamics with mass loss. Solutions faibles pour un syt eme hyperbolique avec contrainte unilat erale et perte de masse Nous consid erons les equations de la dynamique des gaz isentropique avec con-trainte unilat erale sur la densit e et perte de masse. Les lois de pression et sans pression sont consid er ees. Nous proposons une formulation faible entropique du sys-t eme qui incorpore la contrainte et le multiplicateur de Lagrange, pour laquelle nous montrons la stabilit e faible et l'existence de solutions. Le mod ele avec pression non nulle est approch e par un mod ele de relaxation BGK cin etique, tandis que le mod ele sans pression est approch e par une dynamique de bouchons collants avec perte de masse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak solutions for a hyperbolic system withunilateral constraint and mass

We consider isentropic gas dynamics equations with unilateral constraint on the density and mass loss. The and pressureless pressure laws are considered. We propose an entropy weak formulation of the system that incorporates the constraint and Lagrange multiplier, for which we prove weak stability and existence of solutions. The nonzero pressure model is approximated by a kinetic BGK relaxation...

متن کامل

Numerical Flux-splitting for a Class of Hyperbolic Systems with Unilateral Constraint

We study in this paper some numerical schemes for hyperbolic systems with unilateral constraint. In particular, we deal with the scalar case, the isentropic gas dynamics system and the fullgas dynamics system. We prove the convergence of the scheme to an entropy solution of the isentropic gas dynamics with unilateral constraint on the density and mass loss. We also study the non-trivial steady ...

متن کامل

Stability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay

In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...

متن کامل

Existence of at least three weak solutions for a quasilinear elliptic system

In this paper, applying two theorems of Ricceri and Bonanno, we will establish the existence of three weak solutions for a quasilinear elliptic system. Indeed, we will assign a differentiable nonlinear operator to a differential equation system such that the critical points of this operator are weak solutions of the system. In this paper, applying two theorems of R...

متن کامل

Non-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution

Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014