Multi-Focus Attention Network for Efficient Deep Reinforcement Learning
نویسندگان
چکیده
Deep reinforcement learning (DRL) has shown incredible performance in learning various tasks to the human level. However, unlike human perception, current DRL models connect the entire low-level sensory input to the state-action values rather than exploiting the relationship between and among entities that constitute the sensory input. Because of this difference, DRL needs vast amount of experience samples to learn. In this paper, we propose a Multi-focus Attention Network (MANet) which mimics human ability to spatially abstract the low-level sensory input into multiple entities and attend to them simultaneously. The proposed method first divides the low-level input into several segments which we refer to as partial states. After this segmentation, parallel attention layers attend to the partial states relevant to solving the task. Our model estimates state-action values using these attended partial states. In our experiments, MANet attains highest scores with significantly less experience samples. Additionally, the model shows higher performance compared to the Deep Q-network and the single attention model as benchmarks. Furthermore, we extend our model to attentive communication model for performing multi-agent cooperative tasks. In multi-agent cooperative task experiments, our model shows 20% faster learning than existing state-of-the-art model.
منابع مشابه
Multi-task learning with deep model based reinforcement learning
In recent years, model-free methods that use deep learning have achieved great success in many different reinforcement learning environments. Most successful approaches focus on solving a single task, while multi-task reinforcement learning remains an open problem. In this paper, we present a model based approach to deep reinforcement learning which we use to solve different tasks simultaneousl...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملWeighted Double Deep Multiagent Reinforcement Learning in Stochastic Cooperative Environments
Despite single agent deep reinforcement learning has achieved significant success due to the experience replay mechanism, Concerns should be reconsidered in multiagent environments. This work focus on the stochastic cooperative environment. We apply a specific adaptation to one recently proposed weighted double estimator and propose a multiagent deep reinforcement learning framework, named Weig...
متن کاملBio-Plausible Reinforcement Learning Systems Learn to Play Atari From Human
We explore a biologically plausible deep reinforcement learning system by feeding it the human observations of the experiment world. The main hypothesis is that the more similar our learning model with the actual human learning model is, the better the performance should be. We examine this idea by using the AuGMEnT deep neural network which is a bio-plausible reinforcement system with a focus ...
متن کاملFederated Control with Hierarchical Multi-Agent Deep Reinforcement Learning
We present a framework combining hierarchical and multi-agent deep reinforcement learning approaches to solve coordination problems among a multitude of agents using a semi-decentralized model. The framework extends the multi-agent learning setup by introducing a meta-controller that guides the communication between agent pairs, enabling agents to focus on communicating with only one other agen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.04603 شماره
صفحات -
تاریخ انتشار 2017