2 Theoretical Background of Polarization-resolved Shg Microscopy 25

نویسنده

  • Ivan Gusachenko
چکیده

We thoroughly analyze the linear propagation effects that affect polarization-resolved Second Harmonic Generation imaging of thick anisotropic tissues such as collagenous tissues. We develop a theoretical model that fully accounts for birefringence and diattenuation along the excitation propagation, and polarization scrambling upon scattering of the harmonic signal. We obtain an excellent agreement with polarizationresolved SHG images at increasing depth within a rat-tail tendon for both polarizations of the forward SHG signal. Most notably, we observe interference fringes due to birefringence in the SHG depth profile when excited at π/4 angle from the tendon axis. We also measure artifactual decrease of ρ = χxxx/χxyy with depth due to diattenuation of the excitation. We therefore derive a method that proves reliable to determine both ρ and the tendon birefringence and diattenuation. © 2010 Optical Society of America OCIS codes: (180.4315) Nonlinear microscopy; (190.2620) Harmonic generation and mixing; (120.5410) Polarimetry; (170.3660) Light propagation in tissues; (170.6935) Tissue characterization References and links 1. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82, 493–508 (2002). 2. W. R. Zipfel, R. Williams, R. Christie, A. Nikitin, B. Hyman, and W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation.” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003). 3. A.-M. Pena, A. Fabre, D. Débarre, J. Marchal-Somme, B. Crestani, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy.” Microsc. Res. Tech. 70(2), 162–170 (2007). 4. M. Strupler, M. Hernest, C. Fligny, J.-L. Martin, P.-L. Tharaux, and M.-C. Schanne-Klein, “Second Harmonic Microscopy to Quantify Renal Interstitial Fibrosis and Arterial Remodeling,” J. Biomed. Optics 13, 054041 (2008). 5. S. V. Plotnikov, A. Millard, P. Campagnola, and W. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 328–339 (2006). 6. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angle of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15(19), 12286–12295 (2007). 7. A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the second order hyperpolarizability of the collagen triple helix and determination of its physical origin.” J. Phys. Chem. B 113(40), 13437–13445 (2009). 8. V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. USA 107(17), 7763–7768 (2010). 9. S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(04), 1637–1643 (1979). #131579 $15.00 USD Received 13 Jul 2010; revised 20 Aug 2010; accepted 22 Aug 2010; published 26 Aug 2010 (C) 2010 OSA 30 August 2010 / Vol. 18, No. 18 / OPTICS EXPRESS 19339 pa st el -0 09 10 14 6, v er si on 1 27 N ov 2 01 3 10. P. Stoller, K. Reiser, P. Celliers, and A. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys J. 82(6), 3330–3342 (2002). 11. P. Stoller, P. Celliers, K. Reiser, and A. Rubenchik, “Quantitative second-harmonic generation microscopy in collagen,” Appl. Opt. 42(25), 5209–5219 (2003). 12. R. Williams, W. R. Zipfel, and W. Webb, “Interpreting second-harmonic generation images of collagen fibrils,” Biophys. J. 88, 1377–1386 (2005). 13. A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the secondorder nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Optics 12(4), 044002 (2007). 14. X. Han, R. M. Burke, M. L. Zettel, P. Tang, and E. B. Brown, “Second harmonic properties of tumor collagen: determining the structural relationship between reactive stroma and healthy stroma,” Opt. Express 16(3), 1846– 1859 (2008). 15. J. C. Mansfield, C. P. Winlove, J. Moger, and S. J. Matcher, “Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy,” J. Biomed. Optics 13(4), 044020 (2008). 16. D. Aı̈t-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18(14), 14859–14870 (2010). 17. O. Nadiarnykh, and P. J. Campagnola, “Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing,” Opt. Express 17, 5794-5806 (2009). 18. M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15(7), 4054–4065 (2007). 19. R. Boyd, Nonlinear optics (Academic press, London, 2003). 20. N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander, and T. E. Milner, “Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT),” Opt. Express 13(12), 4611–4628 (2005). 21. J. Park, N. J. Kemp, H. G. Rylander, and T. E. Milner, “Complex polarization ratio to determine polarization properties of anisotropic tissue using polarization-sensitive optical coherence tomography,” Opt. Express 17(16), 13402–13417 (2009). 22. N. Olivier and E. Beaurepaire, “Third-harmonic generation microscopy with focus-engineered beams: a numerical study,” Opt. Express 16(19), 14703–14715 (2008). 23. P. Schön, M. Behrndt, D. Aı̈t-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81(1), 013809 (2010). 24. X. D. Wang, and L. H. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Optics 7, 279-290 (2002). 25. R. LaComb, O. Nadiarnykh, S. Carey, S. and P. J. Campagnola, “Quantitative second harmonic generation imaging and modeling of the optical clearing mechanism in striated muscle and tendon,” J. Biomed. Optics 13, 021109 (2008). 26. T. Boulesteix, A. Pena, N. Pagès, G. Godeau, M.-P. Sauviat, E. Beaurepaire, and M. Schanne-Klein, “Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure,” Cytometry 69A(1), 20–26 (2006).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical, numerical and experimental study of geometrical parameters that affect anisotropy measurements in polarization-resolved SHG microscopy.

Polarization-resolved second harmonic generation (P-SHG) microscopy is an efficient imaging modality for in situ observation of biopolymers structure in tissues, providing information about their mean in-plane orientation and their molecular structure and 3D distribution. Nevertheless, P-SHG signal build-up in a strongly focused regime is not throroughly understood yet, preventing reliable and ...

متن کامل

Polarization-resolved second-harmonic generation in tendon upon mechanical stretching.

Collagen is a triple-helical protein that forms various macromolecular organizations in tissues and is responsible for the biomechanical and physical properties of most organs. Second-harmonic generation (SHG) microscopy is a valuable imaging technique to probe collagen fibrillar organization. In this article, we use a multiscale nonlinear optical formalism to bring theoretical evidence that an...

متن کامل

Measurement of orientation and susceptibility ratios using a polarization-resolved second-harmonic generation holographic microscope

Three-dimensional second-harmonic fields, sample orientation, and susceptibility ratios of biological samples are measured using polarization-resolved second-harmonic generation (SHG) microscopy. The three-dimensional (3D) polarization is gathered by measurement of a series of holograms for which excitation and analyzer polarizations are systematically varied, and the 3D SHG field is recovered ...

متن کامل

In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy

The transparency and mechanical strength of the cornea are related to the highly organized three-dimensional distribution of collagen fibrils. It is of great interest to develop specific and contrasted in vivo imaging tools to probe these collagenous structures, which is not available yet. Second Harmonic Generation (SHG) microscopy is a unique tool to reveal fibrillar collagen within unstained...

متن کامل

Polarization-resolved second harmonic generation microscopy with a four-channel Stokes-polarimeter.

We developed a four-channel photon counting based Stokes-polarimeter for spatial characterization of polarization effects in second harmonic generation (SHG). We have implemented a calibration technique allowing quantitative measurement of polarization parameters, such as the degree of polarization (DOP), degree of linear polarization (DOLP), degree of circular polarization (DOCP), as well as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013