Assessing the Spatial Variability of Alfalfa Yield Using Satellite Imagery and Ground-Based Data
نویسندگان
چکیده
Understanding the temporal and spatial variability in a crop yield is viewed as one of the key steps in the implementation of precision agriculture practices. Therefore, a study on a center pivot irrigated 23.5 ha field in Saudi Arabia was conducted to assess the variability in alfalfa yield using Landsat-8 imagery and a hay yield monitor data. In addition, the study was designed to also explore the potential of predicting the alfalfa yield using vegetation indices. A calibrated yield monitor mounted on a large rectangular hay baler was used to measure the actual alfalfa yield for four alfalfa harvests performed in the period from October 2013 to May 2014. A total of 18 Landsat-8 images, representing different crop growth stages, were used to derive different vegetation indices (VIs). Data from the yield monitor was used to generate yield maps, which illustrated a definite spatial variation in alfalfa yield across the experimental field for the four studied harvests as indicated by the high spatial correlation values (0.75 to 0.97) and the low P-values (4.7E-103 to 8.9E-27). The yield monitor-measured alfalfa actual yield was compared to the predicted yield form the Vis. Results of the study showed that there was a correlation between actual and predicted yield. The highest correlations were observed between actual yield and the predicted using NIR reflectance, SAVI and NDVI with maximum correlation coefficients of 0.69, 0.68 and 0.63, respectively.
منابع مشابه
Mid-Season High-Resolution Satellite Imagery for Forecasting Site-Specific Corn Yield
A timely and accurate crop yield forecast is crucial to make better decisions on crop management, marketing, and storage by assessing ahead and implementing based on expected crop performance. The objective of this study was to investigate the potential of high-resolution satellite imagery data collected at mid-growing season for identification of within-field variability and to forecast corn y...
متن کاملValidation of Volunteered Geographic Information Landuse Change Using Satellite Imagery
Land use change monitoring is one of the main concerns of managers and urban planners due to human activities and unbalanced physical development in urban areas. In this paper, a combination of remote sensing data and volunteered geographic information was used to assess the quality of volunteered geographic information on land use and land cover changes monitoring. For this purpose, the ORBVIE...
متن کاملInvestigation on the Amount of Mortality of Iranian Oak Trees (Quercus brantii Lindi) using Satellite Imagery (Case study: Dashtebarm forests of Fars Province)
In recent years, oak trees in the Zagros forests have suffered a lot of fatalities for unclear reasons. Determining the rate and severity of forest crown density changes is important for the investigation and management of these forests. This research was carried out with the aim of determining the amount of crown cover changes in the forest area of Dashtebarm in Fars province under the influen...
متن کاملAerosol Optical Depth Spatial and Temporal Variability Using Satellite Data Over Indian Major Cities
Introduction: The study’s main aim is to investigate the long-term variation of Aerosol Optical Depth (AOD). It also aims to show the relationship between meteorological parameters. This study evaluates long-term (2010 to 2021) special and temporal changes over major Indian regions using satellite-based data from NASA’s Terra Satellite. Materials and Methods: This study was carried out during ...
متن کاملVariability and Correlation between the Seed Yield and its Component in Alfalfa (Medicago sativa L.) Populations under Dry Land Farming System, Hamadan, Iran
. In order to study the variation for seed yield and its components, 200 accessions of alfalfa (Medicago sativa L.) were sown as drilled plots, using alpha designs/unreplicated with two repeated entries with in all of 10 blocks under dry land farming system in Kabodarahang Research Station, Hamadan, Iran, during 2010 to 2011. Data were analyzed for descriptive statistics, correlation, regressio...
متن کامل