Accounting for neutron exposure in the Japanese atomic bomb survivors.
نویسندگان
چکیده
The Japanese atomic bomb survivors that were directly exposed to both γ rays and neutrons have been followed by the Radiation Effects Research Foundation (RERF). The estimation of the γ-ray risks requires some adjustment for the greater biological effect of the neutrons per unit dose. Because the small neutron doses and the predominant γ-ray doses are highly correlated, the neutron relative biological effectiveness (RBE) cannot be reliably estimated from the survivors' data and information from radiobiology must be invoked. As data became available on neutron doses, RERF has used a constant neutron RBE value of 10, even though radiobiological studies indicate that the RBE values appear to have considerably larger values at low doses. The approximation RBE = 10 assumes that if the RBE is variable it takes roughly this value in the range of total dose most relevant for linear risk estimation, namely about 1 Gy. We consider some possible RBE functions to explain the correct use and the impact of a dose-dependent RBE. However, we do not advocate any particular choice or even that a variable RBE be employed. Rather we show that the assumed neutron RBE, within a wide range of choices, is far less important to the outcome of risk assessment of the RERF data than generally believed. Some of these misperceptions have been related to the consideration of variable RBE functions, and without due attention to the fact that in the case of the A-bomb survivors' data, the mixed field of neutrons and γ rays must be considered. Therefore, the RBE value of neutrons is much lower than the RBE in pure neutron fields that are used in radiobiological experiments. Thus, applying the pure neutron field RBE to the mixed-field A-bomb radiation can lead to an overestimation of the actual neutron RBE for moderate total dose levels of 1 Gy by a factor of more than four. While in a pure neutron exposure the RBE depends on the neutron dose, in the mixed field it depends on both components of exposure, and in particular, we show that in the RERF setting the RBE depends mainly on the accompanying γ-ray dose.
منابع مشابه
(41)Ca in tooth enamel. Part I: a biological signature of neutron exposure in atomic bomb survivors.
The detection of (41)Ca atoms in tooth enamel using accelerator mass spectrometry is suggested as a method capable of reconstructing thermal neutron exposures from atomic bomb survivors in Hiroshima and Nagasaki. In general, (41)Ca atoms are produced via thermal neutron capture by stable (40)Ca. Thus any (41)Ca atoms present in the tooth enamel of the survivors would be due to neutron exposure ...
متن کاملNeutron relative biological effectiveness in Hiroshima and Nagasaki atomic bomb survivors: a critical review
The calculated risk of cancer in humans due to radiation exposure is based primarily on long-term follow-up studies, e.g. the life-span study (LSS) on atomic bomb (A-bomb) survivors in Hiroshima and Nagasaki. Since A-bomb radiation consists of a mixture of γ-rays and neutrons, it is essential that the relative biological effectiveness (RBE) of neutrons is adequately evaluated if a study is to s...
متن کاملJapanese Legacy Cohorts: The Life Span Study Atomic Bomb Survivor Cohort and Survivors’ Offspring
Cohorts of atomic bomb survivors-including those exposed in utero-and children conceived after parental exposure were established to investigate late health effects of atomic bomb radiation and its transgenerational effects by the Atomic Bomb Casualty Commission (ABCC) in the 1950s. ABCC was reorganized to the Radiation Effects Research Foundation (RERF) in 1975, and all work has been continued...
متن کاملGreetings: 50 years of Atomic Bomb Casualty Commission-Radiation Effects Research Foundation studies.
The Atomic Bomb Casualty Commission was established in Hiroshima in 1947 and in Nagasaki in 1948 under the auspices of the U.S. National Academy of Sciences to initiate a long-term and comprehensive epidemiological and genetic study of the atomic bomb survivors. It was replaced in 1975 by the Radiation Effects Research Foundation which is a nonprofit Japanese foundation binationally managed and...
متن کاملRecent Fukushima nuclear detonation, Chernobyl nuclear fallout, three mile island nuclear accident and atomic bomb explosion – rethinking the effects of nuclear radiations over human health
Background: The earlier Atomic Bomb explosion in Hiroshima and Nagasaki, and three worth mentioning nuclear accidents - detonation at Fukushima Daiichi nuclear plant, Chernobyl nuclear fallout and an accident at Three Mile Island nuclear power plant have made us more worried about the secure exploitation of nuclear energy. The central focus of this paper is to review radiation-mediated health e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Radiation research
دوره 182 6 شماره
صفحات -
تاریخ انتشار 2014