Comparative Proteomic Analysis of Cotton Fiber Development and Protein Extraction Method Comparison in Late Stage Fibers

نویسندگان

  • Hana Mujahid
  • Ken Pendarvis
  • Joseph S. Reddy
  • Babi Ramesh Reddy Nallamilli
  • K. R. Reddy
  • Bindu Nanduri
  • Zhaohua Peng
چکیده

The distinct stages of cotton fiber development and maturation serve as a single-celled model for studying the molecular mechanisms of plant cell elongation, cell wall development and cellulose biosynthesis. However, this model system of plant cell development is compromised for proteomic studies due to a lack of an efficient protein extraction method during the later stages of fiber development, because of a recalcitrant cell wall and the presence of abundant phenolic compounds. Here, we compared the quality and quantities of proteins extracted from 25 dpa (days post anthesis) fiber with multiple protein extraction methods and present a comprehensive quantitative proteomic study of fiber development from 10 dpa to 25 dpa. Comparative analysis using a label-free quantification method revealed 287 differentially-expressed proteins in the 10 dpa to 25 dpa fiber developmental period. Proteins involved in cell wall metabolism and regulation, cytoskeleton development and carbohydrate metabolism among other functional categories in four fiber developmental stages were identified. Our studies provide protocols for protein extraction from maturing fiber tissues for mass spectrometry analysis and expand knowledge of the proteomic profile of cotton fiber development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on the Damaging of Dyed Cotton Fibers with Direct Dye in Spinning Processes and its Effect on the Properties of Cotton Mélange Yarn

The influence of dyeing and spinning on the characteristics of cotton fibers and its impact on the properties of cotton mélange yarn has been investigated. Grey cotton fibers with mean fiber length and fineness of 29 mm and 4.2 micronair were pre-treated and dyed. Three ring yarns were spun from 100 % grey cotton (R.R.Y), 50-50 % blend of dyed and grey cotton (M.R.Y) and 100 % dyed cotton fiber...

متن کامل

A Comparative Study on the Dyeability of Stabraq (Milkweed) Fibers with Reactive Dyes

In this work, raw fibers of a local species of stabraq (milkweed) were scoured, bleached and blended with cotton fibers with a ratio of 75/25 (cotton/stabraq). The improved stabraq fibers, scoured and bleached cotton and the blended fibers were spun into fine yarns and then they were subjected to dyeing with two types of reactive dyes namely, cold brand and high exhaustion brand reactive dye at...

متن کامل

Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense.

Pima cotton (Gossypium barbadense) is widely cultivated because of its long, strong seed trichomes ('fibers') used for premium textiles. These agronomically advanced fibers were derived following domestication and thousands of years of human-mediated crop improvement. To gain an insight into fiber development and evolution, we conducted comparative proteomic and transcriptomic profiling of deve...

متن کامل

Proteomic Identification of Differentially Expressed Proteins in the <italic>Ligon lintless</italic> Mutant of Upland Cotton (<italic>Gossypium hirsutum</italic> L.)

Cotton fiber is an ideal model for studying plant cell elongation. To date, the underlying mechanisms controlling fiber elongation remain unclear due to their high complexity. In this study, a comparative proteomic analysis between a short-lint fiber mutant (Ligon lintless, Li1) and its wild-type was performed to identify fiber elongation-related proteins. By 2-DE combined with local EST databa...

متن کامل

Proteomic identification of differentially expressed proteins in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.).

Cotton fiber is an ideal model for studying plant cell elongation. To date, the underlying mechanisms controlling fiber elongation remain unclear due to their high complexity. In this study, a comparative proteomic analysis between a short-lint fiber mutant (Ligon lintless, Li(1)) and its wild-type was performed to identify fiber elongation-related proteins. By 2-DE combined with local EST data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016