An Incremental Bayesian Approach for Training Multilayer Perceptrons

نویسندگان

  • Dimitris Tzikas
  • Aristidis Likas
چکیده

The multilayer perceptron (MLP) is a well established neural network model for supervised learning problems. Furthermore, it is well known that its performance for a given problem depends crucially on appropriately selecting the MLP architecture, which is typically achieved using cross-validation. In this work, we propose an incremental Bayesian methodology to address the important problem of automatic determination of the number of hidden units in MLPs with one hidden layer. The proposed methodology treats the one-hidden layer MLP as a linear model consisting of a weighted combination of basis functions (hidden units). Then an incremental method for sparse Bayesian learning of linear models is employed that effectively adjusts not only the combination weights, but also the parameters of the hidden units. Experimental results for several well-known classification data sets demonstrate that the proposed methodology successfully identifies optimal MLP architectures in terms of generalization error.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Hybrid Systems to Design and Optimize Artificial Neural Networks

In this paper we conduct a comparative study between hybrid methods to optimize multilayer perceptrons: a model that optimizes the architecture and initial weights of multilayer perceptrons; a parallel approach to optimize the architecture and initial weights of multilayer perceptrons; a method that searches for the parameters of the training algorithm, and an approach for cooperative co-evolut...

متن کامل

Singularities in Learning Models: Gaussian Random Field Approach

Singularities are ubiquitous in the parameter space of hierarchical models such as multilayer perceptrons. At singularities, the Fisher information metric degenerates, implying that the Cramér-Rao paradigm does no more hold and the classical model selection theory such as AIC and MDL cannot be applied. It is important to study the relation between the generalization error and the training error...

متن کامل

Geometrical Singularities in the Neuromanifold of Multilayer Perceptrons

Singularities are ubiquitous in the parameter space of hierarchical models such as multilayer perceptrons. At singularities, the Fisher information matrix degenerates, and the Cramer-Rao paradigm does no more hold, implying that the classical model selection theory such as AIC and MDL cannot be applied. It is important to study the relation between the generalization error and the training erro...

متن کامل

Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection

Incorporating prior knowledge into black-box classifiers is still much of an open problem. We propose a hybrid Bayesian methodology that consists in encoding prior knowledge in the form of a (Bayesian) belief network and then using this knowledge to estimate an informative prior for a black-box model (e.g. a multilayer perceptron). Two technical approaches are proposed for the transformation of...

متن کامل

Fast training of multilayer perceptrons

Training a multilayer perceptron by an error backpropagation algorithm is slow and uncertain. This paper describes a new approach which is much faster and certain than error backpropagation. The proposed approach is based on combined iterative and direct solution methods. In this approach, we use an inverse transformation for linearization of nonlinear output activation functions, direct soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010