Regression with Ordered Predictors via Ordinal Smoothing Splines

نویسنده

  • Nathaniel E. Helwig
چکیده

Many applied studies collect one or more ordered categorical predictors, which do not fit neatly within classic regression frameworks. In most cases, ordinal predictors are treated as either nominal (unordered) variables or metric (continuous) variables in regression models, which is theoretically and/or computationally undesirable. In this paper, we discuss the benefit of taking a smoothing spline approach to the modeling of ordinal predictors. The purpose of this paper is to provide theoretical insight into the ordinal smoothing spline, as well as examples revealing the potential of the ordinal smoothing spline for various types of applied research. Specifically, we (i) derive the analytical form of the ordinal smoothing spline reproducing kernel, (ii) propose an ordinal smoothing spline isotonic regression estimator, (iii) prove an asymptotic equivalence between the ordinal and linear smoothing spline reproducing kernel functions, (iv) develop large sample approximations for the ordinal smoothing spline, and (v) demonstrate the use of ordinal smoothing splines for isotonic regression and semiparametric regression with multiple predictors. Our results reveal that the ordinal smoothing spline offers a flexible approach for incorporating ordered predictors in regression models, and has the benefit of being invariant to any monotonic transformation of the predictor scores.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The crs Package: Nonparametric Regression Splines for Continuous and Categorical Predictors

A new package crs is introduced for computing nonparametric regression (and quantile) splines in the presence of both continuous and categorical predictors. B-splines are employed in the regression model for the continuous predictors and kernel weighting is employed for the categorical predictors. We also develop a simple R interface to NOMAD, which is a mixed integer optimization solver used t...

متن کامل

Efficient computation of smoothing splines via adaptive basis sampling

Smoothing splines provide flexible nonparametric regression estimators. However, the high computational cost of smoothing splines for large datasets has hindered their wide application. In this article, we develop a new method, named adaptive basis sampling, for efficient computation of smoothing splines in super-large samples. Except for the univariate case where the Reinsch algorithm is appli...

متن کامل

Adaptive Piecewise Polynomial Estimation via Trend Filtering

We study trend filtering, a recently proposed tool of Kim et al. (2009) for nonparametric regression. The trend filtering estimate is defined as the minimizer of a penalized least squares criterion, in which the penalty term sums the absolute kth order discrete derivatives over the input points. Perhaps not surprisingly, trend filtering estimates appear to have the structure of kth degree splin...

متن کامل

Smoothing spline Gaussian regression: more scalable computation via efficient approximation

Smoothing splines via the penalized least squares method provide versatile and effective nonparametric models for regression with Gaussian responses. The computation of smoothing splines is generally of the order O.n3/, n being the sample size, which severely limits its practical applicability. We study more scalable computation of smoothing spline regression via certain low dimensional approxi...

متن کامل

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017